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Foreword

The purpose of this report is to examine the problem
of scattering of electromagnetic waves by an open, perfectly
conducting surface., Specifically, fo formulate the problem
as a boundary value problem, to convert the latter into a
problem in integral equations, and to show that it can have at
most one solution. 1In trying to reach these objectives we were
guided by the methods employed to achieve the same ends for the
problem of scattering by a closed surface. In this latter
case there are two items of special concern: the types of
surfaces and the types of linear current densities induced on
these surfaces that would allow for a successful completion
of the aforementioned tasks. In the case of an open surface
these same items appear but in a more complicated form: in
the interior of the surface things are not any different from
a closed surface; near the edge, however, additional require-
ments must be imposed both on the surface and on the induced
linear current density. Though it is not immediately apparent
from reading this report, much of the time devoted to its
preparation was spent in finding the right class of open
surfaces and current densities for which the objectives could

be accomplished.

For convenience the report has been divided into two
parts. In Part II we deal with problem described above. 1In

Part I we examine the behavior, near the edge of the open
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surface, of the quasi-stationary form of the integral 3

representations for the scattered fields obtained in Part II.

This part is essential in completing the proof that the

;
]
1
1

boundary value problem is equivalent to a problem in integral
equations. The apparent reversal in the order of the two
parts is intentional, for it is in what we call Part I that
4 all the restrictions on the surface and some on the current

density come into play. The other possible arrangement,

i.e. making Part I an appendix of the main problem, would

necessitate bringing in these restrictions at the beginning of

the report without any possible explanation. Again for
convenience, we have supplied each part with its own title,

abstract, and introduction.
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The Behavior of Potentials with Singular Densities
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Near the Edge of an Open Surface.
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Abstract
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This work deals with the behavior of a simple-layer

potential and its spatial derivatives near the edge of an

open surface. Types of open surfaces and density distributions,
singular near the boundary of such surfaces, are determined

for which these potentials satisfy a finiteness of energy
condition. The resulting estimates are useful in establishing
integral representations for the electromagnetic fields

scattered by a perfectly conducting open surface.
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A. Introduction.

It has long been recognized (Jones, 1964; Sommerfeld,
1964) that the conditions required for scattering problems
involving closed surfaces to be well-posed are not sufficient
in case the surfaces are open. In fact, it has been shown
(Jones, 1964) that in order that the open surface scattering
problem have at most one solution (if at all), then one more
condition is required of the scattered fields, be they acoustic
or electromagnetic. This condition requires that the fields
behave in a specified way in the vicinity of the edge of the
open surface and is usually referred to as an edge condition.
Though a condition of this type is dictated purely from the
mathematics of the problem, it has also a physical meaning:
It is intimately connected to what is known as the finiteness
of energy condition which requires that, in a volume devoid
of sources, the energy content should go to zero with the

volume.

In this work we will examine whether a simple-layer
potential and its first derivatives satisfy such an edge or
energy condition. This question came about from studying the
problem of finding integral representations for the electro-
magnetic fields scattered by a perfectly conducting open
surface. Once found, these representations, which are in

effect the Stratton-Chu formulas, must be tested as to whether
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they satisfy an edge condition. It can be shown that this can
be accomplished by examining a simple-~layer potential whose
density, defined on the open surface, is allowed to increase
beyond bound (though in a specified way) in the approach to

the boundary of the surface. Specifically, we will show that
the line integral of the square of the potential, and also of
its spatial derivatives, around a circle centered on the
boundary of the open surface and lying on a plane perpendicular
to the boundary exhibit a certain order behavior with respect
to the radius of the circle. In Section B we will introduce the
types of open surfaces to be considered. In Section C we will
describe the class of allowable densities and will state the
problem and the results. In Sections D through G we will prove
the results stated in Section C, while in Section H we will
offer some concluding remarks. Some detailed computations will

be left for Appendices A through D.

Before closing we mention that problems of this type have
been studied in great detail in two dimensions for Cauchy-type
integrals whose density is defined on an open curve
(Muskhelishvili, 1953; Gakhov, 1966). As above, the density is
allowed to grow beyond bound near the end-points of the curve.
Using these results, Hayashi (1973) was able to obtain order
relations near the end-points of the curve for the scattered
fields for the two-dimensional Dirichlet problem for the

Helmholtz equation. Some criticism of his results is offered

in Section H.
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B. Description of the surface.

In this section we will introduce the type of surface over
which the density of the simple layer potential will be defined.
In order to do so we need a number of definitions, some of

which we will adopt from Carmo (1976).

3

Definition 1. A surface S in R is a smooth surface if

at each point M of S there exists a unique tangent plane
(and, hence, a unique normal line) and a positive number 4,
the same for all points M of S, such that if we erect a
rectangular coordinate system with origin at M and the
z-axis along the normal at M, then the portion of S
intercepted by the sphere x2+y2+z2 = d2 can be represented
in the form

9F (0,0) 0F (0,0)

= F(XIY)I (XIY) € Al; F(OIO) = 3% == By =0, (1)

where F 1is an one-to-one function with continuous second
partials in A', and where A' is the closed region of the
xy-plane which is the projection onto the xy-plane of the

portion of S intercepted by the sphere.

With respect to this definition we note that the one-to-one
property of F guarantees that S 1is not self-intersecting,
which in turn guarantees the uniqueness of the tangent plane

at each point of S. Moreover, since there are two choices of
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a unit normal on z = F(x,y), we choose the one whose
z-component points in the same direction as the positive

z-axis.

Definition 2. A surface S in R3 is a smooth open surface

i
(a) S 1is a smooth surface

(b) for any two points in R3

which do not belong to
S there exists at least one continuous curve
connecting them which does not have any points in

common with S.

(c) S has as its boundary a simple closed and

rectifiable curve C.

Definition 3. A smooth surface S 1is an orientable surface

if it is possible to cover it with a family of coordinate

neighborhoods as in (1) in such a way that if a point M of

S belongs to two neighborhoods of this family, then the change

of coordinates has positive Jacobian at M.

This definition says in effect that, at each point in the
common part of two overlapping neighborhoods, the normals

for each neighborhood point in the same direction.

Definition 4. A surface S in R3 is a bounded surface if

there exists a sphere that contains S in its interior.

Definition 5. A surface S in R3 is a connected surface
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if any two of its points can be connected by a continuous

curve on S.

3

Definition 6. A surface S in R is a simply connected

surface if it is connected and if every simple closed curve

on S can be continuously deformed into a point of 8.

The type of surface we are interested in is a bounded,
simply connected, orientable, smooth open surface with some
additional conditions on its boundary as well as the portion
of the surface near the boundary. The condition of boundedness
together with that of smoothness result in the surface having
area (cf.Carmo, 1976). The condition of connectedness is not
really necessary. The actual surface may be composed of a
(finite) number of disjoint surfaces. Each such surface again
could be multiply connected provided that the "holes" in it are
not composed of a single point in R3, and that the curves
bounding these "holes" as well as the surface near them
obey the conditions described below. As it will become clear

later on, however, an extension of the ensuing results to such

surfaces is immediate, and for this reason, as well as to avoid

cumbersome notations, we restrict ourselves to a simply connected

surface.

We now turn to the description of the boundary as well as
of the surface near it. From this point on we call

the surface S, its boundary C, and its closure S (S = sUC).

‘“Jﬂ“-.ﬁﬂh-hu-h--u-.u.a-.uug.._.“mm - " v b
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The properties of the previous paragraph apply now to S
and not just S. Thus, if M 1is a point of €, we have
the representation (1) for the portion of S inside the
sphere of radius d with center at M. We require next that
at each point of C there exists a well-defined tangent

line which we identify with the x-axis of the local coordinate

TP WY R

system. We take the x-axis to be positively oriented with
respect to the z-axis, so that the y-axis is pointed towards !
S. With respect to this coordinate system, we impose the

following condition on S:

For all points M of C there exist fixed positive
numbers A, a', and b' such that

1+u l

|F(x,y)~F(0,y)]| < A|x]| 2 x| < a* 24, <y b <cd (2)

where uy > i > 0 and may depend on the point M of C.

This condition can be given a geometric interpretation.

The unit normal vector for the portion of the surface under

consideration is given by

—Fxx—F y+z

s 0 e

Jap Bap ® v
¥ "ty

Since from (2) Fx(O,y) =0, 0<y<b'<d, we have that on

the yz-plane, the unit normal is




oot i e i

T

ey

.

-7 =

—Fy(olY)9+2

2
J1+
1 Fy (0,y)

o
n:

But this is precisely the unit normal vector to the two-
dimensional curve 2z = F(0,y), 0 <y < b' < d, provided its
arclength is increasing with y. Thus, Eq. (2) requires
that the three-dimensional curve 2z = F(0,y) behaves as a
two-dimensional curve in 0 <y < b' < d, which in turn says
that the curve has torsion zero, (or, equivalently, its
osculating plane is the yz-plane). This lack of torsion can
be loosely restated in terms of the surface itself as follows:
At x = 0. the surface is not allowed to twist about the

curve z = F(d,¥), 0 <y < b’ < d.

With respect to the boundary C of S, we require that
it is twice continuously differentiable with respect to its
arclength and that the portion of C intercepted by the sphere
of radius d and center a point M of C has a projection

on the xy-plane described by the pair of equations.
= E(a), ¥ =08, 8, 28 X 8, (3)

where s represents arclength measured from the origin and
increasing in the direction of the positive x-axis. The functions

f and g possess continuous second derivatives, bounded third

ones, and satisfy the conditions,
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£(0) = g(0) =0, £'(0) =1, g'(0) =0, f'(S)2+g'(S)2 o (4)

We note here that the curve described in (3) does not intersect

:Q itself since the point (x,y) is in the domain of F.

We call the conditions described by Egs. (2), (3), and

(4) the open surface edge conditions and we make the following

definition, F
o

Definition 7. A surface S in R3 is a regular open surface !

| if it is a bounded, simply connected, orientable, smooth open ﬁ
surface, and if it satisfies the open surface edge conditions

(2) - (4).

This is the type of surface we will be considering from now on.

Cs Description of the problem.

The objective here is to study the behavior of a simple-

layer potential and its first derivatives near the boundary of

- a reqgular open surface. The potential is of the form

7 h (W)
Uu(p) = fs R(P,M) ds (5)

where R(P,M) 1is the Euclidean distance between the points P

and M, Me S, P ¢S, and h is the density function defined

N

on S. As is well known this type of potential has been studied
in great detail for S a closed Lyapunov surface, and h

H6lder-continuous on it (Gunter, 1967; Rellogg, 19353). 1In
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the present case the surface is open and the density will be
allowed to grow beyond bound in the approach to the boundary.
In order to define the density function precisely, we need to

introduce a new curvilinear system of coordinates.

With center a point MO of C we erect rectangular
coordinates, as described in the previous section, and we focus
on the portion of A' contained in the rectangle [x]| < a',

0 <y < b'. The unit tangent vector at a point of the plane

curve (3) is

£ = £'(s)x + g'(s)y, (6)

while the unit normal vector is

ﬁO = EXQO = -g'(s)x + £'(s)y. {7) ~

The position vector then to a point (x,y) of A' is

xf(s) + yg(s) + ﬁo(s)p, 0 >0 (8)

from which we get the transformation

x = f£(s)-g'(s)p, y = g(s)+f'(s)p (9)

which will be one-to-one provided the Jacobian

a(SrD) i k(s) ( )
is not zero. Here, «(s) 1is the curvature of the curve in
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Kitslv= Y% (s)gtds) = g'ls)f" (). {(11)

By the assumption on f and g, «k 1is bounded and we can
s choose p sufficiently small so that the Jacobian is
strictly positive. We assume that this is the case for the

v curvilinear rectangle

A= {{s.0) = |a] £a, 0.2 p xb}cl-a*a"] x [0,b*). (12)

The density function h is now defined as follows:
it is a real-valued function defined over S and satisfying

the following two conditions

a) In every closed and connected subset S' of §,

bounded away from C, the function h is continuous.

b) In A of (12), i.e., near and on the boundary, the

function h 1is of the form

l1-a

% hyy = Z8Y) 0 0 cq<1, a+u>1, (x,9 €A (13) |
: o |

where u 1is the index introduced in (2) and o 1is a
function defined on A and satisfying the Lipschitz |

¥ 1 condition ‘

: [o0(M;) = o(M,))| < A|M-M,|, M,, M, e A . (14)
: 1 2 "2 1 2

! Definition 8. A 'real-valued function h defined over a
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regular open surface S is said to be a reguiar density

function for the surface if it satisfies conditions (a) and

(b) above.

As mentioned at the beginning of this section, the
point P in (5) is near the boundary C of S and is chosen
as follows: Given a point Mg of C, we make it the origin
of the rectangular coordinate system described above. We take
the point P to be a point on the yz-plane with coordinates
(y',2z') and such that 0 < (y'2+z’2)l’/2 = p' < b. . With this

point we also associate polar coordinates (p',¢') with

y' = p' cos $', 2*' =p''sin §*', Pp' > 0, 0 X $" < 2=m. (15)

In the succeeding sections we will examine the behavior of
the line integral of the square of U(P) as well as the square
of its spatial derivatives on the circle y'2+z'2 = p'2 in the

limit as p' » 0. The results can be summarized in the following

two theorems.

Theorem 1l: Let S =S \UC be a regular open surface (Def.7 )
and h a regular density function (Def. 8) defined on S.

Let U(P) be the simple-layer potential defined in (5), where
P=(0,y',2"'), M= (x,Y,2) with the coordinate system as

in the preceeding paragraph. Let also

xh (M)

3 ds.
S R(P,M)

u,(p) = -I

.
¢
g
|




Then,
U(P) = 0(1), U (P) = 0(1), p' O,

Theorem 2: Let S and h be as in Theorem 1 and define

U, (p) = _J (y=y")h (M) 4o U, () = _J (z-z')h(M) 4o
s : s

R(P,M) R(P,M)>

Then,

y2a-1

0(p ) .

2m 2
J p'|U.(P)]|“d¢"' =
0 3

0(p'(log p')z), =1

We remark here that the estimates in Theorem 1 are stronger
than those of Theorem 2. Several attempts were made to obtain

estimates for U and U like those for U and U

2 3 h 8
were not successful. In each case the bounds would depend on

but

the angle ¢' on a way that would make them non-square-

integrable with respect to ¢'.

D. The behavior of the simple-layer

We split the integral in (5) into two integrals by writing

h(M) 4o +I h(M) _ 46
R(P,M) S-S5 (M) R(P, M)
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where S(A) is that neighborhood of s about Mo whose
projection on the xy-plane is the region |s| <a, 0<p=x<bh.
The second of these integrals is continuous in a neighborhood

of the point M and its limit as p' - 0 1is equal to the

OI
analagous integral obtained when P is replaced by Mg The

first integral can be written as

J Rie 1 0= = J c A Per ® ax gy
S (A) ' A p (P, M)
g*(s,p) 2 2
- ————E0 . J14F_“+F_“ (1-k(s)p)dsdp, (17)
fA ot %R (P, M) Pl

where R(P,M) = /;<2+(y—y')2+(z--z')2 and o*(s,p) =

o(x(s,p),y(s,p)). We then have

h (M)
R(D,M) 95 T-a_,

< M'f ) n BT - /x2+(y-y')2 (18)
Ao

locn

where M' = max{lo*(s,p)(l-K(s)p)[|/1+Fx2+Fy2 s (Epp) e Al EE

in (18) we expand x and y about s = 0, we find that
(see Appendix A),

=+ = L (140(e')), e » 0, (19)

/524 (p-y 1) 2

provided that b < e'/6(|k| +1) <1, a < e'/2(l+M)) < 1,

[€[b < 1, with K = k(0), M, = 6M+M2, and where M is
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the maximum of |[£f"|, |g"|, |[f"'|, and |g"'|. We can then
write
h (M) *-13q +
=21 _35| < M(1+0(e')) P P LR (20)
S(A)R(PIM) s

A »/s2+(o-|y'|)2'

This last integral exists and is of 0(l) as y' + 0, (see

Appendix C). We thus have,

U(P) = 0(1), »*+ 0, 0 < §" < 2¢ (21)
and, hence,
2m 2
J p'|U(P)|“dd' = 0(p'), p' = 0. (22)
0
E. The behavior of Ul(P).

In this section we deal with the integral

U, (P) = -j Eﬁiﬂl—§ as. (23)
S R(P,M)

As with eq. (16), this integral can be split into two integrals,

the second of which is well behaved. For the first one we write,

o-1
J EELML_§ ds = J [o(x,y)sec ¢ - 0(0,]|y"'|)sec ¢'] —59———3 dxdy +
S(A) R(P,M) A R(P,M)
a=1
+ 0(0,|y"'|)sec y' J ——53——§ dxdy, (24)
A R(P,M)




where,

sec Y = 1+Fx2+Fy2 I(x,y), sec ' = /1+Fx2+Fy2 I(O,Iy']), (25)

i.e. Y 1is the angle the z-axis makes with the normal to the
surface at (x,y) while V' 1is the corresponding angle with
the normal at (0,|y'|). Since F is twice continuously

differentiable we have that

|sec y - sec ¥'| < const./§2+(y—|y'|)2 ; (26)

similarly, since o satisfies (14)

fo(x,y) - o(0,ly'|)}] < const.v42+(y- Y'l)z : (27)

Combining the two equations, we obtain

|lo(x,y)sec ¢ - o(0,|y'|)sec v'| < ¢ /§2+(y—|y'|)2 ‘ (28)

c a constant. We then have that the first integral on the

right-hand side of (24) is, in absolute value, less or equal

to
a=1 /2 . (%2 a-1
CJ [x]p - Vx +(y51%7£) dxdy < CJ p%” "dxdy (29)
A (x°+(y-y') ") A /x2+(y—ly'l)2

This last integral is of the type encountered in (20) and is

ok, UL} as ¢ A,

277, Lo (MR e NI
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For the remaining integral in (24) we write

X arl a-1 b | 1 X a=1
J ———R——j dxdy = J Xp R ey (O | dxdy + j p3 dxdy, (30)
A R(P,M) A R(P,M) R A R
where,
ey 'y 9 e
R = #x +(y=y") "+{P(O,y)=2") - (31)

PR S b T TS CET AN A TR S eI

For the expression in the brackets we write

EI
R(P,M) >

1 1 1 1 1
=|l— - = + e L (32
R(P,M) R][R(P,M)z R(P,M)R  R?

hg
.

FPor the first term of this expression we have

N SRS SRR o T i
R(P,M) R R(P,M)R[R(P,M)+R] ' i
and
R = R(P,M)Z = [FUO,9)~2']" = [F(x,g)=-2"]2
|
ii = [F(0,y)-F(x,y)1[F(0,y)-2z'+F(x,y)-2"]
»
'f so that
% R? - R(P, M) | < |F(x,y)-F(0,y) | (R+R(P,M))
i and, by (33},
o 1) L Ix,y)-PLo.y) |
R(P,M _ R| = R(P,MR : (34)

Combining this result with (2), we have for (32)

f
|
{
|
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(35)

=} 7=
%
e o | - QEEIM)R st REWR 7] < 5. i
R(P,M) i : R(P,M) ! R g! 13

where r' 1is given by (19). The first integral on the right-

hand side of (30) is, in absolute value, less than or equal to

2+u _a-1 =1L
3Aj lﬁi—-z£L~—-dxdy < BAJ o dxdy = (36)
L}
A r A [/§2+(y_|y,|)2]

The last integral exists and is bounded for all values of y'

| provided o + p > 1, (see Appendix C).

T e N e e ot e oy i

In order to evaluate the remaining integral in (30) we

resort to the coordinates (s,p) introduced in (9). We thus

write,

J LS - | 0* L (£(s)-g" (s)p)
A A

3 = R3 (1-k(s)p)dsdp. (37)

Expanding the integrand about s

0 (see Appendix B), we have

a-1

A
! J =P 5~ dxdy = (1+0(e"))
;DK
0% L (1-%p)s + % as°] i
J 5 3 53/3 (L= s)p)dstdp,; €50 . (38)
A [s™+(p=y) ') “+(F(0,p)-2")“]

From (11)

k(s) = x(0) + [f'(54)9'"(84)-g'(54)f'"(s4)]s, U < S4 < Sy (39)

so that




e e
e e

-18- ;

a=-1
f =0 5~ dxdy = (1+0(e"))
A

i

{Ib Ja pa-lé(l-Eo)S
dsdp+ 0(1) .
-a [s2+(p-y')2+(F(0”ﬁ-z')2]3/2 }

Since the integral in the brackets is zero, we have that

a-1
J xp dxdy = 0(1), p' >0, 0 < ¢' < 2m. (40)
A

Collecting the results from (29), (36), and (40), we

have that

Vl(P) ® Yl B U, B S 4T £ 20 (41)
and, consequently,

2m 2
J p'|vy(P)|%a¢" = 0(p"), o' + 0. (42)
0

At this point we have concluded the proof of Theorem 1.

In the remaining two sections we will prove Theorem 2.

U The behavior of UZ(P)'

In this section we deal with the integral

Uy (P) = - J (y-y")h(M) 4q, (43)
S  R(P,M)
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As with (16), this integral can be split into two integrals,

the second of which is well behaved. For the first one we

write,

J =y b L. o

S(A) R(p,M)>
L | N i
r ! = J lo(x,y)sec ¥ - o(0,|y'|)sec y'] —3L3L—J1—§— dxdy +
? A R(P,M)
3
& |
E | + 0(0,|y'|)sec ¢! J (y-y") ot —t— - L5|axay +
F | A R(P,M) R

!
| i) o=
+ 0(0,|y"'|)sec ¢ J —X~X—§E——— dxdy. (44)
A R

The first two integrals on the righthand side can be treated

in the same way as in the previous section. For the last

integral we have, according to Appendix B and the last section,

1y =L
J _(_EL)3_Q__ dxdy =
A R

a=-1

b ra - &
o (l+0(€')){J J (p-y') (1-Kp)p =173
]

3 5 dsdp + 0(1) } =
0 ‘-a [s"+(p=y') “+(F(0,p)-2")

<2 RS

b {p=y'}) (1-Fp)p” L

0 [ (p-y') 2+ (F(0,p)-2") 21Va2+(p=y ') 24+ (F(0,p)-2") 2

=(l+0(e')){2aj dp+0(l)}.

S e S £y e S S St i g
y o b g
- i - - -

P

(45)

If we let M*=max{|F(O,p)! =0 < p < b}, we then have

(o-y") 2 + (F(0,0)-212 < (+[y' D2 + m+[2' 2.

|
|
|
|
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From this inequality together with the requirement that

bt|y'] < =2, M*+|z'| < 2
/Z /3

we have that

(p-y')2 +(F(0,p)-z’)2 < a2

(46)

(47)

which allows us to expand the radical in (45) into a power series

to obtain

=1

1 a-1 b ' B
J LX:X_%Q___ dxdy = (1+0(€.)){2J (p-y )él-Kp)p
A R 0 (p-y') 24 (F(0,p)-2")

2do+0(1)}.

(48)

We observe that the last integral in (48) can be written as

[b foed Pelafalof N N Rs Jb p* T (a-kp) o

0 (p-y') 2+ (F(0,0)-2")> g T

where,

T=9p+ iF(0,p), 0 < p <b, and w = y'+iz’'.

To study the complex integral in (49) we introduce polar

coordinates
p e 1F (0,0} = rele, ge= B (r]

with

r = /o%+F (0,002 > p.

From Appendix D we also have

(49)

(50)

(51)

(52)
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dr > % dp, r 0 {53}

| A

3l

Taking into consideration that |k|p < 1, we have that

X

P 0% (1-%p) P o (14(K]0 N e T ¥
J =W i i6 o pl i6 it ! |9
0 0 |re”’-p'e | Y3 /0 |re -p'e” | 4

(54)
where 1 = r{b).
From the discussion up to now we see that
% 2 3
b o-1 :
2 i She .
G B el o J . — + {3
2 Lo Jret®-pret®]
£ ’i
b =i .
+0(1) J LI+ 0, o' >0, (55) ‘
0 |re “-p'e | 1
where Cy is a constant. Since the aim is to estimate the i
integral ,;
2n 3
J o' [V, (P)[“a¢" (56) 3
0 i
&
we start by estimating the expression %
L3
2 [(%b Lol . i
LAt = J o‘f de’, (57) §
0 v /é2+p'2—2rp' cos(¢'=6(xr)) g

which we can write as
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o s

N i 4 e S i LS AN =it 0. e, Mgy S

(58)
(rq)a_ldrdq

/;2+p'2-2rp' cos(¢'—6(r))/g?+p'2-2qp' cos(¢'-6(q))

We consider the integration on the (r,q,¢') space. The integrand
is not defined on the surface obtained by revolving the curve

r =p', 06 =¢' about the ¢'-axis; otherwise it is continuous

on (O,rb] X (O,rb] x [0,2m]. Hence, the integrand is measurable
(cf. Sobolev, 1964). We show below that the iterated integral
with the order of integration reversed exists. By the Tonelli-
Hobson theorem (cf. Apostol, 1974), it is then equal to the

original integral. We have that

r r
b b
I(p') < p' J J (rq)* taraq
0 0
(59)
1/2
JZW d‘b' JZT{ d¢'
2 12 L 1] 2 |2 Al 1 v
0 £ #p* =2rp* cos(¢g =8 xr}) ‘0 q +p" —Zrp’' cos{¢"=9(g})

where, above, we used the Cauchy-Schwarz inequality. If we make
the substitution y = ¢' - 68 we see that the integrands in the
last two integrals are periodic in Yy with period 2m. We can

then write,
rb ry o
I(p') < p' [ [ (rq) drdq
: 0 0

2T as 2m as 1/2
- I - Y . (60)
0  +p"' =2rp' cos ¢' ‘0 q *p' =2qp' cos ¢']

i

e LT L

-
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The integrals with respect to ¢' can be evaluated
by using the following integral representation for Legendre

functions of the second kind (Magnus et al., 1966, p. 186)

m
Qfg(z) = i(2n)-%(zz—l)% { (z-cos t)-ldt. (61)
0
Since (Magnus et al., 1966, p. 172)
o’ (2) = D% (a2-1)" (62)
-% 2 '
we have that
" -1 - S
f (z=cos t) ~dt = m(z2°-1) . (63)
0

From (63) we can compute the integrals in (60):

JZH d¢' i 1 Jﬂ d¢' ~
0 r2+p'2-2rp' cos ¢' - zo! 0 r2+p'2 - BoR 4 i
*xp° (64)
i = 2T
rp'[ﬁ_tﬂ;i]z_l]% |r2—0'2|
4Xp |

Equation (60) then becomes

2
T r
bt b a-1 b a=1
i R (rq) drdq 5 : E dr
I(p') < 2mp [ J = 27mp {J 3 >
- 0 gV
e '/lrz"p'zl Iq -p ' lr . l (65)




DA

We make the change of variables r = p'f to obtain for (65)

1= 2
& i b/p' ,0-1
3 I(p") < 2np'2a i3 J Q_E_QQ; (66)
0 o i
G
In evaluating (66) we consider the cases 0 < a < 1
{
{ and o = 1 separately. For 0 < a < 1,
1
|
i rb/p' =1 w© -1
.? f A8 <[ Uil T (67)
0 jg2-11% ~ Jo |g%-1)7
and the last integral exists as an improper integral. In fact,
through simple transformations it can be shown that
o _g-1 L o) B ! "
I 5—2—‘1—5;=—]2'~J £ (1-0) %2 Lae + % f £75(1-0) %275 g¢ =
0 jg"=1]" 0 0
(68)
= Ligtl olp(l 1-a
: 2[5[2' 2 +B{2' 3 H
:3., where B stands for the Beta function. We then have that
e
3 ttpry < & pr2o-dfafl aliafl Boullt 5 g oy (69)
S TR L b ' .
4 For the case a = 1 we compute
' r ' r '
2 5
it
0 |g°-1]| 0 fi_i2 1 /‘Ez"_"'l
E 2 r
. . b V_QL g =1
ok o loq}};—[l+ ] 4 [rb] :I ~ 3 it R log[o,] ; (70)
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so that by substitution into (66) we obtain

2
X{p") = 2ﬂp'[l + % + log 52} : a =1 (71)

To estimate the second term in (56), i.e. the one
resulting from the second term in (55), we use the Cauchy-

Schwarz inequality and the results for 1I(p'); thus,

2 p N o
' J d¢'o'[ < V2mp'I(p') <
! 0 0 /§2+p' -2rp' cos ¢'
1 a 1 1l-a}f .o (72)
TT[B[Z, 2]+B[2, 5 ]p ) M s TR
<
- £ T
Zﬂp’Ll + 3 5z log[ET]], a =1
Finally, L
0(p'%* Yy, 0<a<l
21 2
p'|v,(P)|“de' = , oY+ 0. (73)
0 2 rb 2
b 0{p'|log ) gl o =l
{jg
| G. The behavior of U3(P).

In this section we examine the integral i

1 i U, (P) = -J {zmz JhU 4, (74)
S R(P,M)
As with (16), this integral can be split into two integrals, ﬁ

| : the second of which is well-behaved. For the first one we

f ': write,




=06~

d R
J LE:E—l}—l-:§29d8= J [o(x,y)secy -0(0,|y"']|)sec w']iE—E—LQ—g-dxdy +
S(A) R(P,M) A R(P,M)
a-1 :
+0(0, |y ) secy’ f 0% zmzt) | —L— - 5 dxdy+f £—{222 ) gxayt.
A R(P,M) R A R

{75)

The first two integrals on the right-hand side can be handled

as in the previous two sections. For the third one we write

(X"l ' _ T
J £__{zm2) gyay = f EC ) oFL0.¥) gxay + [ O 2" gxay.
A R A P R A o R

(76)
By (2), the first of the integrals on the right hand side is,

in absolute value, less than or equal to

o-1 1+yp a-1
AI B——L’;—l———dxdyiA p__dxdy . _ . (7
A R A[/Z 3 2J W
x“+({y=-{y'|)

The last integral is of the same type as the one in (36). For

the last integral in (76) we write, using Appendix B,

p® L (E (0, 0) -2+ § ¥s?)
2

F(O,y)-=z"' i

A [8%+(p-y') 2+ (F(0,p)-2")

(1-«(s)p)dsdp = (1+0(e))

bra o _.~ a-1
{J [ [F(0,p)-2'] (1-xp)p 377 dsdo+0(l)}. (78)

0/-a (824 (p-y') 24 (F(0,0)-2"

S— SR oA W S s Sl o o el s 4 e o

o8 e R ARG U Y

o
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P T
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As with (45)-(48), we have

: b : ¥ a-1
JA_EiQLXlZE— dxdy = (1+o(e)){2J LF(0,0)2 1 1xple 2d°+°(l)}’

pl-aR3

We observe now that

b ; et g
J [F(0,0)=2'1(-kp)Do™ ~ 4. - _1p J

0 (p-y")2+(F(0,p)-2") 72

0 (p-y')2+(F(0,0)-2")

(79)

T

= fe. )

and, hence, all the results of the previous section can be

used here.

The sought-after bound is the same as in (73), i.e.

- ) S PR B R
J p'|V3(P)I d¢* = r)72 a' * 9. (81)
o oo T -

) Conclusion.

The main results of this work are
Section C.
were certain as to the class of density
to have included (Def. 8) but not as to
surfaces. Condition (2) on the surface

o+ u >1 in (14) were not anticipated

by the manner we proved these theorems.

Theorems 1 and 2 of

In formulating these theorems at the outset we

functions we wanted

the class of open

as well as the condition
and were made necessary

It will be interesting

to try to construct alternate proofs which do not employ these

two conditions. Another point for investigation, which we also

brought up in Section C, is whether order relations with

respect to p'

can be ohtained for U2

and U3 which would
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lead to the same result as in Theorem 2. With respect to
this last point, we wish to mention that the proof Hayashi
(1973) gave for the two-dimensional case is not satisfactory.

The reasons for it are outlined below.

Consider a simple, open, and bounded arc L on the
yz-plane and make one of the end points the center of a coor-
dinate system as in (15) with (say) the y'-axis tangent to
L at the end-point. Consider the function u(p',¢') which is
the combination of a simple- and a double-layer potential with
densities defined on L. Hayashi shows that u = 0(1)
as p' + 0. For 29du/dp' he, however, reasons as follows:

"If we assume that 9du/dp' = O(Q'Q), p' » U, then & > =i

is necessary in order that u is bounded when p' -+ 0."

This statement is not wrong but on the other hand it is not a
proof that B3du/dp' = O(p'a), p' - 0, as claimed in his

Theorem A.2. What has been proven is that if u(p') = 0(1l)

and Ju/dp' = O(D'Q), then o > -1. We wish to make the point
here that even though his conclusion is incorrect, this in no way
affects the results of his paper for, as in our case, he is

interested in an integral of the type

2
jo p'lulp',0')|d¢’

vanishing in the limit as p' »+ 0 and, we believe, though

we have not proven, that this is indeed the case.
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Appendix A. Proof of Equation (20).

We start with Equation (9) which we repeat here for

convenience:

x = f(s)-g'(s) , y = g(s)+f'(s) .

(A.1)

Without loss of generality let s > 0. Expanding x and vy

about s = 0, we find

x = (L-(0)p)s + S[£"(s))=g"" (s1)pls’,
Yy=p+ %[g"(sz)+f"'(s2)p]sz,

where 0 < sl < g, 0< S, < s. We then have

x2+(y-y')2 = sz+(p—y')2+(—2K +K2p2)52 +

E(p-y')s2+(l—lp)&s3 + %(&2+éz)s4,

where k = k(0), and

P ~

a = &(sl,o) = LT84 )=g" ' (8ylpy B = 6(52,0) = g"(52)+f"'(sz,o)o-

(A.2)

(A.3)

(A.4)

Letting B stand for sz+(o'Y')2 while A for the rest of

the right-hand side of (A.3), we can write

a
B

< [-2xp+i2p? | +] B s +]1-kp| |a] 82 + F(a*+B%)s°.

(A.5)

1 T T e e N e S T = RO e
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Assuming that f and g have second and third derivatives

bounded by the constant M, we get

la] < (1+p), |B] < M(1+p), (A.6)

| so that
i
a4 ]5 < |-2+kp| [0+ (1+p) ||+ 1-Ro|M(1+0) [s| + £ M2 (1+p) ?|s]?
~ - -~ 1.3 T 1
| < (24xp) | k| p+2M(1+p) |s|+| k| pM(1+p) |s]| + 5 M”(1+p) |s] i
é (A.7) L
;
| : 5
| Further requiring that o <1, |k|p <1, |s] <1, we get i
N faxr - (R.7) i
§
| A = 3 & 2 X ~ ;
| Bl o 317 prams|+au]s |4 |s| = 3] %|pren|s|nds| = 3]%|p+m, |s],
(A.8)
§ where Ml = 6M+M2. Letting 0 < € < 1 be given, we have that
a |a/B| < € provided that
L :
ir & £
et PR e R e T TR SR Y PR DR 1Y
ﬂ;f 6(|%|+1) 2(1+Ml)
b
% 1 We now examine the expression
,‘1 L P | ETEhE e AEIOR | B (A.10)
B9 VB¥A VB VYI+A/B VB VI+A/B

For 0 < A/B < € we have
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T 1 oA 1l }
/1+A/B V1+e
2 A
while for -¢ < B 20 o
___l___ — l < 1 -~ l «
/1+A/B l-¢
: A
Since, for ’EI & ey
yCov e B SR o (A.11)
e»0t ¢ |/I+A/B 2
we have from (A.10)
S [1+0(e) ], e » 0t . (A.12)
B+A VB

Without loss of generality we assume that the conditions
in (A.9) for (A.l1l2) to hold are satisfied in the curvilinear

rectangle A of (12).

T3 0 T A R T TN TR R e AT

5 R A
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Appendix B. The expression for 1/R in terms of the

coordinates (s,p).

We wish to rewrite 1/R of (31) in terms of the coordinates

(s,p). Let

u = F(0,y) = F(0,g(s)+pf'(s))

.al = ' £ " —
= g'(0)+p£f"(0) =
9s e

F
£
§
;\.Z

= Y(S3Ip)

2
Q—EL%LXL (g'(s3)+pf"(s3))2

S=S3

" oF (0,y)

3y (g"(s3)+pf"'(s3))

S=S3

From (B.2) we have
(F(0,y)-2'12 = [F(0,p)-2"'1% + Y[F(0,p)-2'1s% +

so that
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1. 5.

2 4 (y-y')2 + (F(O,y)—z')2 = BY + A", (B.4)

S

where

B = B + [P(0,p)~2"1° (B.5)

At = A + VIFLO,pl~2"]}s" & (B.6)

|
=<
0

and A and B have the meaning given to them in Appendix A.
Then,

a2y 22 2

< I-2conco® [+ ([BI+1YD) [s]+]1-%ol [al |s] + 3248777 s?

i

and by (A.5) and (A.8)

Al
B

<3lclo + myls| + |v]ls| + 5 ¥2s% (B.7)

From (B.3) with all derivatives bounded by M,

1 |;| £ M3(l+o)2+M2(l+p) < (M3+M2)(l+p)2 < (M+1)3(1+p)2 < 4(M+1)3

(B.8)
1 so that for (B.7) we have
Bl |§T < 3elp + Mpta (D) Tea(m+1) P || = 3[x|p + M,[s].
3 (B.9)
Choosing p and s according to (A.9) with M substituted

; 1
¢
by M,, we have that [A'/B'| < e.
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We now write
10 1 it i
i 2N = 1l + —mMm—— - 1 . (B.lo)
R3 (B|+A|)3/§ B|3/2 [ A|]3/2
14+=—
B
AI
Feor: 0= BT < €, We have
€ o
1 < S
e (1+¢) /2
Bl
while, for =-g < éT < 0,
i1 1
- ] < -1
[1+A_'] 3 (1-¢)*/2
1
Since, for |A'/B'| < g,
: 1
lim RN 1 e 2 CBiL1)
Sl s a3/
l+§T
we have from (B.10)
1 1
= = —%5 [1+0(e)], € » OF (B.12)
R3 B,3/2

|

T —T————— s

e T I N T T T Y e T

.-

T R, -
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Appendix C. Computation of the integrals in Equations (20)

and (36).

The integral in (20) is a special case (U=1l) of the one

in (36). As with (18), the integral in (36) can be converted

into the following integral in the (s,p) plane:

pa—ldsdp i J

| ¥ ¢ 2"[.1
| 1 [/82+(0-IY'I)2]

| o

f 2 {J ou ldp J ds S &
[,@2+(p_|y.l)2]

e Jb pa—l e ds ]

: J° Pl

P dsdp
2=
= L -ty 1)

bJa o-1
0

i}

]

(o]

ik a
= 2jy*|® f n® ldn ds o *
! e

ds

- E o (/eZyy 1 Zmn?) "

‘ {(C.1)

where, above, we made the change of variables p = |y'|n. Letting

also s = |y'|(1-n)¢ and s = |y'|(n-1)& in the first and

e

second integrals, respectively, we obtain
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a-1

J p_ “dsdp 5
2=
4 [/gz+(o-IY'I)2J

afly' [Hd-ny - g

PR, - e
. (ve?)™™

1
= 2|y'|%*H l{J At (1-n) ¥ 2y [
0

b/ly"| " > a/ly'|(n-1)
= J o 1(n-1)“ lgn J dg

2=

' b [V1+¢2) i
We now distinguish two cases.

Case 33 0 <y ¢ ¥ <1

With 0 < np < 1 we have that

}
i
i
g
4

Ja/!y'l(l—n) e a/ly'|(1-n)

7 S TS AL, I WMONTE: AT T

2
a
£ (1o}

a
] log{TyTTTT:HT +N]1 + I

y'|

a

= Tog| 2 ¢ Tonlt saf1 e L 1P0-m®
g(lY' {i=n)} g 2

a
= log{!Y' (l-n)J A log[l +\/1 3 [a

Similarly, for 1 < n < b/ly']|,




|
§
i

=38

a/ly'|(n-1) 4 ( / 2
BRI - | a____ [b)
J ]Z-U = loglly'|(n-l)l 2 1°g‘l ys ® \a)

0 [A+e?

We note here that, since b > |y'| and because of (46), the

argument of the first logarithm in each of the last two

equations 1is greater than one.

Substituting (C.3) and (C.4) in (C.2) we obtain

a-1 1

dsdp

JA [/§2+(p-|y'l)2]

g fb/IY'| e

Laonsl a
3 n (n-1) log {m] dn

L e =
+ 109[1 +A/ 1+ 2 : ]|y'|°L+1Jl l{f n® 1(l—n)u ldn +
0

byt "
ok J B l(n-l)u ldn}
1

We now assume that a+up > 1. For the first integral on the

right (call it I,), we write

i

%
1. < J na+u—2 log[ 'a ]dn + J (1_n)a+u-2

s
e b A i

, 1 otu=-1 b BTN 'L | a
P < 2|y I [JOH (1~n) log{-,—yT]——(—l—_n—)]dn

log[ T ]dn =
iY [(1-n)

|

(C.4)

{C.5)

(C.6)
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For the second integral, call it I2’

(n-1) log

b/|y"| ok
B—=2 a =
22 Jl [wrrter)en -

RN Bt + el
!y'|a+“-l(a+u-l) lag b-]y'] 4 ag+i=1

The third integral is the Beta~function B(a,u), while for the
fourth integral, 14,

(b"‘,y' l)(l+].l—l
ly' 14 (-1

Equation (C.5) then becomes,

atu~-1

Ty'T

- ey
J 0% Lasap L b 2|y,la+u-l[log[ 2a ] RO ] 9
4

2-u — o+u=1
/e to-1v' D 2

P11 b e a 1
& a+p-1 Lo b-[y'] B at+u-1 -

” e g OFU=1

at+u-1

an expression which exists for all values of vy
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Case 2: Ik < < 2
With
W=l v > 0, (C.10)
equation (C.2) becomes
6% tasdp

. Msz+(o-|y'|)2]2_‘i

a/ly'| (1-n) e
ey, i

; ()™

1
e zly-la+v{f na—l(l-n)vdn I
0

J»b/IY'I el va Ja/lY'I(n-l) ac 3
l1-v -
1 0 [/1+g2]
TN a/ly'] (1-n)
f_ Zly'|a+\) n(l l(l_n)\)dn _d_E_ &
0 0 El Vv
B L a/ly'| (n-1)
+ J n® l(n-l)vdn I —%%; =
E 0 [
v : S T4 b Al v, a
= 2%—]y'|a {J n% Llan + J n® ldn = E%EE— : (C.11)
0 1

We note that for uw > 2 the original integral is well-behaved.
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Appendix D: Proof of the inequalities in Equation (53).

For the curve C defined by (50) as

C = {1 = p+iF(0,p) = 0 < p < b}

we define the position vector ¥(p) by means of (51):
r(p) = pp+F(0,p)z = r(cos © p + sin 6 2), (D.1)

where 8 and z denote unit vectors in the p. and =z directions,

respectively. We can then write for the tangent vector

~ ~

aE W (e rabin = tcostoreinia) Vier ™ a5 = (Sotbossingeide . (D.3)

where s denotes arclength along C, and

COS¢=———1——-, SinW:-F.—'___.' FlzaF(O'O)

30
/14+F 2 J14F 2

& (D.3)

On the other hand,

’ L
W -t 504 dp = AL ds = (cos® cosy + sinf siny)ds

0242 Vo2 +F2 /14712 (D.4)

dr =

For 0 < p <b and b sufficiently small we can have
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cos 6 > Zg , |sin 8] < (D.5)

|

~

since C is a Lyapunov curve (cf. Gunter, 1967). The same
statement can be made about the angle ¢ which is the angle

the tangent to C at a point makes with the p-axis or,

equivalently, the normal makes with the z-axis. We then have,

dr > (cos® cosy - sin|6|sin|y|)ds > ﬁg . i% - % . % ds = % ds
(D.6)
or
dr > = ds > % do. (D.7)

To prove the second of (53) we apply the mean value theorem

b

to the function F: ;
§

r=/F4F0,02 =01+ (F (0,07 = = < 7% 6,  (D.8)

1 3 3

i ¥

where 0 < pl < Dy
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The Formulation of the Problem of Scattering of Electromagnetic

Waves by an Open, Perfectly Conducting Surface.

Abstract

The problem of scattering of electromagnetic waves by an
open, perfectly conducting surface is formulated as a boundary
value problem. It is shown that for certain types of open
surfaces as well as induced linear current densities the boundary
value problem is equivalent to a problem in integral equations

of the first kind, and that, moreover, it can have at most one

solution.
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A. Introduction

One of the most prominent problems of electromagnetic

scattering theory is that of scattering of time-harmonic waves
by a perfect conductor which occupies a finite region of

space and is bounded by @ closed surface S. Mathematically,
this problem is a boundary value problem stated in terms of
Maxwell's equations, radiation conditions, boundary values

of the tangential component of the electric field on the surface
S, and continuity properties of the scattered fields in space
and on the surface. One way of studying this problem, i.e.
answering questions on the existence, uniqueness, and properties
of solutions, is to convert it to a problem in integral equa-
tions where the unknown function is the linear current density
on the surface S. This conversion can be accomplished provided
the surface and the current density possess certain mathematical

properties (cf. Miller, 1969).

A problem very similar to the above but possessing one
additional feature is that of scattering of electromagnetic
waves by an open, perfectly conducting surface S. The distinctive
feature is the very fact that the surface is open. As pointed
out in Heins and Silver (1955), it has been known for some time
that the conditions imposed on the closed surface problem
described above are not sufficient in guaranteeing the unique-
ness of the solution of the open surface problem, and that, in order

to have uniqueness, additional ones are needed. These conditions
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vary from author to author (cf. Heins & Silver, 1955; Jones
1964) but, ultimately, all of them have to do with the

behavior of the scattered fields near the edge of the open sur-
face and, in effect, demand that no sources of electromagnetic

waves are induced on the edge.

Most of the works mentioned in the last two references
deal with plane surfaces (or, equivalently, with apertures in
perfectly conducting plane screens), and for the most part aim
only at obtaining order relations for the scattered fields near
the edge of the open surface, quite often at the expense of
mathematical rigor. In the present work we propose to formulate
the problem of scattering of electromagnetic waves by an open,
perfectly conducting surface as a boundary value problem, then
convert it to a problem in integral equations, and finally
prove that it can have at most one solution. In Section B we
present the class of open surfaces that we will consider, some
coordinates systems and notation, as well as a brief review of
the basic definitions and theorems of vector analysis. 1In
Section C we define the boundary value problem, i.e. present all
the conditions that the scattered electromagnetic fields must
satisfy. Besides the usual ones required of closed surfaces,
as described above, these conditions include statements on the
behavior of the scattered fields as well as of the induced current

density near the edge of the surface. The scattered fields are

required to satisfy an energy condition near the edge
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which requires that the energy enclosed in a finite region of
space is finite and that it vanishes with the volume of the
region. The induced current density is required to have a normal

component to the edge which achieves a finite limit at the

edge, while its component parallel to the edge is allowed to

grow beyond bound in the approach to the edge but in a prescribed

way. The current density is also required to have first partial
5 derivatives which, near the edge, behave in the manner of its com-
ponent parallel to the edge. In Section D we assess the physical
implications of the requirements on the scattered fields and

current density near the edge.

In Sections E and F we prove the equivalence theorem,
i.e. that the boundary value problem of Section C is equivalent
to a problem in integral equations, while in Section G we prove
the uniqueness theorem, i.e. that the problem can have at most

one solution. In Section H we offer some concluding remarks, and

{ in Appendices A, B, and C some detailed computations.

i
i
:
:

B. Preliminary considerations

{ In this section we will introduce the scattering surface,
two coordinate systems associated with it, some notation, as well

) i as define the basic operations of vector analysis.

The surface under consideration is a perfectly conducting

surface S bounded by a curve C. We denote by S the closure
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of S(S = s{JC) and we require that § is a regular open

surface. The definition, properties, and local description

of such a surface are given in Part I, Section B, and for this
reason we do not repeat them here. In order to reach the

§ objectives of this paper we will have to use this surface in

conjunction with the integral theorems of vector analysis. To

f this end we need to parametrize the curve C with respect to its

‘-! arclength and to also introduce two coordinate systems.

| From an arbitrary point M of C we measure arclength,
s', along C and we have the following parametric representation
for the curve with respect to an arbitrary rectangular coordinate

system xyz:

x=f£(s8'), ¥ =gle’), z=Trhis"), 0<s" €L, (1)

where L 1is the length of C. We note that because of the

definition of €' din Paxt I, Section B, the functions £, g,

i;,: and ﬁ are twice continuously differentiable in s'; moreover,
O
= = - -
) f'2+g'2+h'2 = 1. The unit tangent vector to C 1is then given by
A o | IR | RS L.
t = £(s8') xtg(s') ygth(s') z . (23

The unit normal vector to S is now chosen so that it is

positively oriented with respect to t. This can be done since

S 1is orientable by definition. With respect to the coordinates
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of (I.l)(l) the unit normal vector is chosen to be

Xx F _y+2z

R A i (3)

1+F_2+F 2
R

i.e. we agree that the local z-axis is positively oriented with
respeet to t. For points M o0f C, we call fi of (3) the

unit normal vector on C. If we also define

T=nx¢ (4)

A

then the triple (ﬁ,E,T) is a positive triple of orthonormal

vectors at each point of C. We note that the vectors t and
T lie on the plane tangent to S at the point of C under

consideration.

The remaining coordinate system is a polar system (p',¢'),

p' >0, 0 < ¢' < 2m. It is erected on the plane of the vectors

~

T and n with the pole at the origin of this plane, and the

angle ¢' measured from T to n. If ;0 is the position

ool

vector to a point of C, and if: p is the position vector on

the 7T-n plane, then the equation

A A A

r = xx+yy+zé = ?0+5' (5)

(1) The Roman numeral one (I) refers to Part I of this work.
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defines a transformation of poeints (s',p".,9') +to points

(x,¥,2). The Jacobian of this transformation is
3T 3T 3T pig? R
- 9dr 3 r _ ' —pltpk JSE
J BS' apl X aq)l p l p p ETJ - (6)

~

The continuity of the second derivatives of £, g, and h

guarantees the boundedness of !dE/dg'I which in turn guarantees

that, for p' sufficiently small, the Jacobian is positive

and the transformation one-to-one. 4

At this point we have completed the discussion of the
coordinates systems that will be employed below. Before moving ;

to the subject of vector analysis we introduce some notation that 1

will be used in the following section. We denote by S, the side
of S facing in the direction of the normal, and by S_ the
other side. If £ 1is a function defined in a region containing
S, we denote by L UE) its limit as its argument approaches

§ from S,(S_). Finally, we denote by . the closed curve

which is the intersection of S with the cylinder
0 8’ <Ly p'm2e >0, 09" < 2n, £7)

where we take € small enough so that there is an one-to-one
correspondence between points of Ce and points of C. Due to the
smoothness of §, CC possesses a tangent vector é which we

take positively o;iented with respect to the normal. If MC

is a point of C. such that M_>MeC, as e » 0, then

t(Me) & EiM) ,
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We conclude this section by explaining the sense in which
the basic operations of vector analysis are to be understood.
The ideas that follow have been taken from Muller (1969) who
presents them in his book in great detail so that we will
opresent here only what is absolutely necessary for our work.

Tc do so we assume familiarity with the definition of a regular
surface and a closed regular surface (Kellogg, 1953; Miller,
3

1969). A regular region will be a compact point set in R

bounded by a closed regular surface.

Definition 1l: -A sequence of regular regions Gv is said to

converge to a point r if for every € > 0 there exists a

0
number N(e) such that all Gv with v > N(e) are entirely

. . . o -
within the region |r-rg| < e.

Definition 2: Let 3(;) be continuous in the neighborhood of
the point ;0. Denote by ||lel the volume of the regular
region GV and by Fv = BGV r its boundary. If, for each

sequence Gv converging to ;0, the limit

lim 1

S T HJ B Yar
G\)—»r0 Gv F

\Y

exists and is unique, then we set

Vev = lim - J nevdr,
G
G +2, 116,11 Jr,
where n 1is the unit normal to Fv . We call Vsv the

>
divergence of v at ry-
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Definition 3: With the notation and conditions of Definition 2,

if the limit

tin, —3 [ A ar
Gv+r0 llell Fv

exists and is unique for each sequence Gv converging to

then we set

+ .
V X v=1im

Gv*r0]|GV

-> -> ->
We call Vxv +the curl of v at 0°
These definitions differ from the usual ones in terms of

the operator

Ll e &

in that they do not require v to have first partial derivatives

at ;O' It can be shown, however, that if 3 has continuous

first partials in the neighborhood of ;0, then the two

definitions are equivalent (Miiller, 1969). From the definitions

above we have the following two theorems (Miller, 1969).

Theorem 1: Let v be continuous in the regular region G.

Let V:v be continuous in each subregion lying entirely in G

If the integral

J Vev av
G

.

SN e TN AT v T

g e
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exists, then

where F = 3G.

Theorem 2: Let S be a surface bounded by the curve C so
that S = sUC is a regular open surface. Let v and Vxv

be continuous in a region that contains C. Then
%] > T
J neVxv ds = J § SCh s L
S c

These two theorems are the well-known divergence and
Stokes' theorems, respectively. It must be noted that they
do not require differentiability of the vector V. Besides these
theorems we will need the surface divergence theorem and for

this reason we introduce the following definitions

Definition 4: A sequence of regular open surfaces

Sv = SviJ Cv is said to converge to a point ;0 if for every

€ > 0 there exists a number N(g) such that all §v with

v > N(e) are entirely within the region I;-;O' L £.

Definition 5: Let 3(;) be continuous in the neighborhood of

>

the point r,. Denote by {lgv{( the surface area of the

regular open surface §v' If, for each sequence Sv converging

to ;0, the limit

NG L A ke DU AR B e i s s b e, ot S et

SOy | g, T ) e

S
NN A
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5 exists and is unique, then we set
-> iy %
Vo-v = =lim, = J gexada™,
' S.*t, |18 1] ‘¢
v 0 v v
-> . > >
and we call V,.v the surface divergence of v at r,.

{ 0 0
With this definition we have the following surface divergence

theorem (Miller, 1969).

Theorem 3: Let v and VO'; be continuous on the regular open

surface S = s |UC. Then,

We note here that in definition 5 as well as in theorems 2 and 3
the conditions on the surface can be relaxed (cf. Muller, 1969).
We close this section with the definition of the gradient of

a scalar function.

Definition 6: With the notation of Definition 2, if the scalar

function U(;) is continuous in the neighborhood of the point

?0, and if
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exists and is unique, then we set

VU = lim 1

e
a5z, TTe 11 Je

and we call VU the gradient of U at ;0.

€. The open surface problem.

In this section we present in mathematical form the
problem of scattering of electromagnetic waves by a perfectly
conducting regular open surface S = S{J C. Before doing so
we introduce a definition that we will need below. In Part I,
Section C, we defined a class of functions that we called
regular density functions. We now restrict this class to the

following.

Definition 7. A real-valued function g defined over a regular
open surface S 1is said to be an H-regular density function for

the surface if it satisfies Eq. (I.14) and the following condition:

In every closed and connected subset S' of S, bounded
away from <C, the function g is HOlder-continuous, i.e. there
exist real numbers B and B such that

B
lgM)-gMy) | < BIMj-M, |7, 0 < B <1,
where B does not depend on the position of Ml and M, in

S', but may depend on the proximity of §' to the boundary

& -0 8B,
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The open surface problem can now be stated as follows:

We wish to find vector-functions E and ©§ which are defined

in R3—C, are continuous in R3—§, also continuous to the

surface S from S, and S_, and satisfy the following

VxE(R) = ik2zH(R), UxH(R) = -ikYE(R), R e (R>-5) (8)

conditions
; (1) Maxwell's equations
&
Ed
| 48| 3
b |
|

| where Z and Y are the free-space impedance and admittance,

respectively, so that

2=yl =7, ik

ST Sy S AT

with Ho the permeability and €9 the permittivity of free

e RIS

space. Equations (8) are also required to hold in the approach

TR AR,

to § from S, and S_

e (ii) The Silver-Miiller-Wilcox radiation conditions

> N o
E & ZRXH = o[
uniformly in the non-radial directions. Here, R = RR, with R
{ the unit vector in the direction of R .

(iii) The edge conditions
(a) For M e C and with respect to the polar coordinate

system of Section B




—

(b)

2T
= gpr2la=ily f Buli®ags = apréiovlly o5 p

(11)

where the order is uniform with respect to M e C,

and where the asterisk denotes the complex conjugate

of the function it is attached to.

On a family of curves Ce + C as described in

Section B, the function
w(ME) = t(Me) . (H_(Me)—H+(M€)), (12.a)

where ME € Ce and t(Me) the unit tangent vector
to Ce at Me ; has a finite limit as & + 0,

and the limit function y(M), M e C, defined by

V(M) = Llim y(M), (12.b)
>0

with Me - M as € =+ 0, is continuous at every point

M of C. Moreover, the function Y defined by

PiM ), 0 <€ <e’

W(Mg) {12.¢)

E(M)I e =0

is an HOlder-continuous function of € on 0 < e < €',
where €' 1is small enough so that there is an one-to-

one correspondence between points of CE and points

oL Cs
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(iv) The boundary condition
A ~ s A —)l
nxE = nxE = -nxE ‘ (13)
Q
s, 8 S
where E' is the electric field of a specified plane wave or a

dipole source or a combination thereof located off S. (The

condition on the normal component of the magnetic field, i.e.

n+H = n'ﬁl = -n-H|? (14)
S, S_ S
need not be specified since it can be derived from (13) by
taking the divergence of it.)
(v) The density conditions: that the function
K(Y) = n(r) x (ﬁ_(;)—ﬁ+(;)), r ¢ S, has partial derivatives of

the first order on S, and that the real and imaginary parts of
the components of K as well as those of its first partials are

H-regular density functions for S (Def. 7).

o= —With respect to this statement of the open surface problem

we would like to make the following comments. Fi;&,,\gpe continuity
of B and H in space and in the approach to S from eitﬁer

side together with condition (i) imply that UxE and VxH are
continuous in space and in the approach to S from either side.
Second, condition (iii.b) is needed only in proving the uniqueness

of the solution of the open surface problem but not for converting v

it into a problem'in integral equations. The same is true about




E
;

AR A S eI i B N A b5

-15-

the existence of the first partials of K in condition {nr) . j
Indeed, for the conversion part we will only need that K and ﬂ
Vo-i (see Def. 5) have real and imaginary parts which are
H~regular density functions for S. As condition (v) stands
Vo-ﬁ exists and is equal to the one given in terms of the
differential operator V since, by definition 7, the first

partials of K are HSlder-continuous on S.

The problem described above differs from the corresponding
closed surface problem mainly in the addition of conditions (iii).

Before undertaking the main task of this paper, i.e. to convert

this problem to a problem in integral equations and to also show
that it has at most oi.. solution, we would like to first discuss

the edge conditions and their physical implications.

D. The edge conditions.

It is well-known that in order to guarantee the uniqueness
of solution of the open surface problem we need one more condition
than what is required for the closed surface problem (Jones, 1964;
Sommerfeld, 1964.b). This condition is associated with the elec-
tromagnetic energy enclosed in a finite region of space. If e

and h are electromagnetic fields satisfying Maxwell's equations

& >
SO i oh e de
Uxe = Mo B3t ¢ Uxh = T {15}

where €0 and Ho stand for the permittivity and permeability




-16-

of free space, respectively, we require that the stored electric
and magnetic energy in a finite region of space devoid of
sources be finite. For a region V of space these energies

are (Sommerfeld, 1964.a)

€ H
W = _Of Dl S 0[ 8.5 av. (16)
e 2 v v

If e = Re(ﬁe_lwt), h = Re(ﬁe—lwt), with E and H depending
on the space variables only, then the time-average electric and

magnetic energies are given by

s € * " M

W o= g J E-Bav, W= — J H-H*av, (17)
Vv v

respectively. The bar denotes time-averaging over one period,
while the star denotes the complex conjugate of the vector it

is attached to (Jones, 1964; Muller, 1969; Stratton , 1941).

In the present case the volume would be a tubular one
surrounding the edge C of S. With respect to the coordinate
system introduced in Section B, this volume (call it Ve) is

defined by

g <8’ =k, D-< p' <g, 0 < ¢' < 27 (18)
The finiteness of energy requirement can then be written as

lim J E.B*av = 0, lim f Hefi*av = 0 . (19)
e+0 VF‘ e>0 V

2 e T S NI i

P

T T

R e e R T
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Instead of this requirement, we impose the edge.conditions i

2T 9
.2(0L—]_))’ a s O |

2“-»—» - 5 o
J E'Ed¢'=0(o'2‘°‘l’>,f H-H*d¢' = 0(p

0 0

where the order conditions are taken to be uniform with respect

3 to Ehe point M of €. €Elearly, 1f a pair of Eunctions E and

e | H satisfy the edge conditions, then they also satisfy the

energy conditions.

Although conditions (20) are necessary for proving that the
open surface problem has at most one solution, they are not
sufficient, at least not for the manner in which we approach the
question. Condition (iii.b) of Section C is also needed and this

we will demonstrate later on. In the meanwhile, we will show that

the introduction of such a condition makes sense physically. Let
f(ﬁ) be a complex~valued function of R defined and with
continuous first partials in a bounded domain containing S in

; its interior, and let E and H be a solution pair for the open
surface problem. Let also CE represent the closed contour on

S which is the intersection of the surface S with the cylinder
in (7). By Stokes' theorem we have that

k] j £(R)t « (H_-H,)ds' = -J £(R)t-H_ds" -J £(R)t-H, ds' =
C -C c

€ € €

; § A o ~ 2 = R A~
= J neVx(fH)ds = J p'es [VEXH+£fVXH]dS = -J [Vf'(pXH)+ikap"E]dS,
Z 2 L

€ € € (21)
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where —C€ is transversed in the opposite direction of Ce’

s' denotes arclength, I_ denotes the cylinder in (7), and |4

i~ -

n the unit normal to the cylinder pointing toward the interior.

s

We can now show that the last integral in (21) vanishes in

the limit as € =+ 0. Since E and ﬁ are solutions of the

oy e ———
& . Sl

Lant &

open surface problem they satisfy (20). Using the Cauchy-

Schwarz inequality, we have that

[stfg-.ﬁaslz < [Jz
A e g Eavan]” <

L (27 = Ak En #2000 A
< EZ{J [ [f[zll—ep'- %%T d¢'ds'} {J f |o'~E|2d¢'as'} <
0o ’o 0o

% 250y = Qye ", (22)

lfllo'-i:’lds]2 -
€

RIS 10 57 one Mo WO YO TR0 4, (V% 3 M

=

where Cl is a constant. Similarly,

(f VE « (pxH)ds| < Czea
; £

>

where C2 is a constant. Since o > 0, both of these expressions

go to zero with e. We then have that

lim f £(R)t + (H_-H)as' = o. (24) :
(> 3 R 2

>




=0

But the integrand in this expression is continuous to the boundary
by the edge condition (iii.b) and the assumption on f. This
allows us to take the limit before integrating, so that

J £t - (A_-f,)ds' = 0 (25)
¢

In order to interpret these last two equations

physically we introduce the induced linear current density, K,
on the surface S
K(X) = n(r) x (H_(£)-H, (X)), T es (26)
a vector tangent to the surface S. Since,
 E (ﬁ_—§+) = (1xn) - (ﬁ_—§+) = T°n X (ﬁ_—ﬁ+) = 1K (27)
we have from (24) and (25)
lim [ £(R)t-Kds' = 0, [ £(R)7t+Kds' = 0. (28)
e+0 ‘C i+
5
With f£(R) = 1, and since 1+K is normal to C, the second of

(28) says that the current (in ampéres) entering the surface must
be equal to the current leaving it. The first of (28) says
basically the same thing. Physically, however, no current is
entering or leaving the surface. 1In fact, we should have that
T*K =0 on C. This information is contained in the second of

(28) but not in the first. To prove it we use the following

theorem (Sobolev, 1964, p. 113).




2 W s

.

ki s i M gt v - - - T St A bl o e

D e

Theorem 4: If a function g is summable in an open set ¢,

and if for any function £ which is continuous on Q the

equality J fgdv = 0 holds, then g must satisfy the condition
Q

J [gldv = 0, and consequently g is equal to zero almost

everywhere in Q. (We remark here that a much stronger version

of this theorem can be found in Smirnov (1964, p. 145)).
Identifying g with ;~§ in the second of (28), we have

that ;-K is equal to zero almost everywhere on C. Since by

(27) and (iii.b) ;°§ is continuous on C, then ;-ﬁ = 0 every-

where on C. Thus the edge conditions of the open surface problem

imply that

~

K =0 on C. (29)

The second of (28) or, equivalently, (25) provides us with
another physical statement. Using the surface divergence

theorem (theorem 3), we have that

or;

« (fK)dS = 0. (30)

With the accepted definition for the electric charge density,

0, induced on S, i.e.
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and the fact that

> gt g v ~ e > .
i —n-VoX(H_—H+) = ik¥n< (E_-E)) = iwg, (32)

we have from (30), with € = 1, £hat
J ocdS = 0, (33)
S

which says that the electric charge induced on S 1is equal to

Zero.

E. The integro-differential equation and integral

representations.

In this section we convert the open surface problem of

Section C into a problem in integral equations.

Theorem 5: If the pair of vector-functions {E,ﬁ} is a solution

of the open surface problem, then E and H are given by

E(R") =j [T}% vo-ié(ri)vc;(iilii')+ikzc(ﬁ|§')i€(§)st, & ¢ (RP-B)
s
(34)
H(R") =J K(R)xVG(R|R')ds, R' ¢ (R>-§) , (35)
s

where,

B o R T e R~ S g

=y
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and where the linear current density K is defined in (26)
satisfies the integro-differential equation
“n(B) B> (F) = J {I% VO-Kn(;)XVG(§|;)+ikZG(§|;)n(;)X§(§)}ds,

S
Moreover, on a family of curves CC + €, the function
T(Me)-K(Me), MP e C_, is identical to the function Y defined

in (12.a}), and

lim T (M )-i(me) = @,
>0 5

Proof: To show that £ is given by (34) we surround the surface
S by a closed surface SO which we construct as follows: Let

§ and € be two positive real numbers such that 0 < § < ¢.

h) . . . . .
Lf RS is the position vector describing S, we

Moreover, we let

- ->’ g
r0+p ' r0 e G,
The surface SO is the closed surface formed by these three

intersecting surfaces as shown in Figure 1.

We apply now Green's second identity in the volume V0

bounded by the surface S the surface S of a sphere whose

0’ R
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radius R eventually recedes to infinity, and.the surface S'

of a sphere of radius r and center at R' ¢ SO' With |8

>

T(R|R") = ikvx(cI), (% (41)

where G 1is given by (36), and I is the identity dyadic, we

have that

; J [VxVxH (R) *T (R|R') -H (R) - VxUxT (R|R') ]AV =
E | v

‘l o
; £ =P I e T = P I (3)

3 = J nge [H(R)xVxT (R|[R'")+VxH (R) xT (R[R") ]ds  (42)
SO+SR+S' .

where the unit normal ng to S0 points away from VO. Since
both H and T satisfy the equation VxUx(:) = kz(-) = 0 in
VO’ the volume integral in (42) is zero, while (cf. Asvestas and

Kleinman, 1971)

(2) Double bars over a letter denote a dyadic. All dyadic and
Q' vector identities used in this work can be found in Van Bladel
e | (1964) .

A ’ (3) This identity can be obtained by writing the dyadic in (41)

4 in rectangular components and applying theorem 1. The vector to be
used in this theorem is of the form v = u x w. From Muller (1969)
we have that if G, ;, VXG, and Vxw are continuous in VO'
then

.

5 > e e o g
Ve (uxw) = weVxu-u-+Vxw

These conditions are satisfied in (42).
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lim j ng [HxVxT+(VxH) xT]1ds = -ikv'xH(R'), (43)
>0 48"
By these last two equations and (8) we have that
E(R') = —g f ng e [H(R) xVxT (R[R') +VxH (R) xT (R[R') ]as. (44)
ks

0"Sr

We next show that the integral over S vanishes in the

R

Iimit as. R = «@. Since,

2

vyxT = ik [VVG+k“GI] ,

and

HxVYG = (VxH) VG-V (HVG)

then, denoting the integral over § by I, we have that

R

I = % J {-ikR-Evc+k2Gznxﬁ—ik[R-VGE—RE-VG]}ds.
S

R

Employing polar coordinates with center at R' and writing

ikR : A
SRR i b Rl = R?
VG = T [ = RZ}R, ds = R“dq
we obtain
I = - 3} SIkRparafisByan + L | ei¥RRqq.
47 47
sR SR

The first of these integrals vanishes in the limit as

R »

(45)

(46)

(47)

(48)

(49)

SRR L. o YA N

SRR
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because of (10), while the second vanishes because of a lemma
of Wilcox (1956) which in effect states that Maxwell's eguation

together with the radiation conditions imply that

f |E]%a0 = o|3|, R > =
o R

Thus (44) becomes

] ne [H(R) xvxT (R|R")+9x8 (R) xT (R|R*) 1ds,
S
0

which by (45) and (46) can be written as

12

e I no'[ﬁx(VVG+k2GT)—ikYEXVX(GT)]dS.
S

k
0

In order to cast this expression in the usual Stratton-Chu
form we use the identities

n (HxT

n, )

~

no-[ExVx(Gf)] = noo[Ex(vch>] = (ﬁoxé)o(vcxf) = (ﬁoxﬁ)xvc

A

- A - S S
no'(HXVVG) (nOXH)'VVG = -(nOXH)'V VG = =V (n0H°VG)

A

= v'(no-vcxﬁ) = v'[no-Vx(Gﬁ)]—v'(GnO-vXﬁ)

= v'[nO-Vx(Gﬁ)J-ikYno-ﬁvc 3
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TR T

e 2 e

where

> > &~ - : i
E(R') = J [nO'EVG+1kZGn
S

Stokes' theorem.

O

(52) then becomes

AN
k

s - > 7 e
XH+(nOXE)XVG]dS + f nO-VX(GH)dS.
S

0

0
(56)

The last integral in this expression vanishes by virtue of
Letting now &6 -+ 0, and using the boundary

condition (13), we have that

J [no-ﬁvc+ikzcn XH+(ﬁ0;E5YVG]dS +
§

0

+ ] [n+ (E_-E,)ve+ikzGnx (H_-H,) )as, (57)
. .

>

is that portion of S not contained in ! . The

first of these integrals can be shown to vanish as ¢ » 0 by

means of the edge conditions (11). Since R' ¢ ZE, G and VG

| are continuous functions of E and, hence, bounded. Using the

o Cauchy-Schwarz inequality as for (22), we have that

and

J n.+EVGAS
b

—>' ca
0 < C(R")e, (58)

J (nyxE) xvGds| < ¢, (R")e® (59)
y

Jv GnOXﬁdS

< C,(R")e” (60)
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so that the first integral in (57) is indeed zero in the limit
as € > 0. The second integral in (57) can be shown to exist

as an improper integral by condition (v) of the open surface
problem. For K = 5-(ﬁ_-ﬁ+) is integrable since its components

have real and imaginary parts that are H-regular density functions

= (ikY)—lVO-K and, because of the

conditions (v) on K, VO-R exists and its real and imaginary

parts are H-regular density functions for S, hence integrable.

s

for 5. From (32}, n-(ﬁ_—E+)

Letting

j (+)ds = 1lim J e S,
S S

e~>0
£

we have that

E(R') = J [E— v -R(ﬁ)vc(ﬁlﬁ')+ikzc(§|ﬁ')R(ﬁ)]ds, R' € (R>-§).
S
(62)
This completes the proof of (34). The proof of (35) follows
similar steps and for this reason we omit it.

~

Equation (38) and the identification of 1+K with Y were
proven in Section D so that it only remains to prove (37). This
equation can be obtained either from (56) or (62). In (56) the
surface S0 is a closed surface, a fact which enables us to
use well-established results regarding the behavior of the
(cf. Muller, 1969,

integral as R approaches o

S48 -

Ch. IV). 1In (62) the surface is open but this equation involves

only two terms and for this reason it is the equation we will use

ol R o Bl 37 v e S e R D T -~

SRR s CRATEAT ANy RS W0
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to obtain (37). The theorems necessary for the derivation are

summarized in Appendix A. From theorem A.3 we have that the
second part of the integral in (62) is continuous at every

point T € S so that

> >

J K(R)G(R|R")ds = f K(R)G(R|R")dS = J K(R)G(R|T)ds (63)
s, S_ S

where by S_(S_) we mean the limit of the integral as R

approaches r from the side S+(S_). From theorem A.4 we have

that the first part of the integral in (62) is continuous at

every point r of S in the approach to it from either side

S, or the side S_ and that

=3 % V. R(X)n(r) + [ Vo K(F)n = G(R|T)as +

‘K(¥)]VG(R|T)dS,  (64)

. Jsvo-§(§)voc(§|?)ds + J [Vy K(R) -V,

where the minus sign corresponds to the approach from Sy and

( the plus from S_. Combining the last three equations we get
S 1F o= n(;) - k& Fid P i ; P« &
E X)) = 3 =5=% V,°K(r) + Js[ik Y, K(R)VG(R]r)+1kZG(R|r)K(R)]ds, res,

‘ ; (65)
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where the first part of the integral must be interpreted in
the sense of (64). This last equation together with the

boundary condition (13) yield (37), and the proof of Theorem 5

is complete.

| The converse of Theorem 5.

Before we state and prove the converse of Theorem 5 we

introduce the following definition

Definition 8. Let K be a vector-function defined on S. Then

5

K is said to be a surface field on S if n+K = 0 everywhere

on | S

Theorem 6. Let K be a surface field defined on S and satisfying

the following conditions

(x) K has partial derivatives of the first order on S, and
the real and imaginary parts of the components of K as well

as those of its first partials are H-regular density functions

for § (pef. 7).

(ii) On a family of curves C€ + C as described in Section B,

the function w(MF) = T(ME)-ﬁ(ME) has a limit as € =+ 0,
and
lim y(M_) = 0. (66.a)
(>
>0

Moreover, the function Y defined by

‘JJ(MC), ) BT g B
Y ) = (66.b)
: ¢ , =0 3

e 2 e

GBI

ey e e T e e T

e

ES= S TS atwe TSk

P
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is an HO6lder-continuous function of

£, Men el ot

where ¢!

is small enough so that there is an one-to-

one correspondence between points of C€ and points of

(111} Por all r e Sl § satisfies the equation

-n (F) B (F) = [ [%K vo-’ﬁ(ﬁ)ﬁ(?)xvc(§|§)+ikzc;<§|'f>3<‘r’)xﬁ(ﬁ)}ds,
e

P—

(67)

where El is the electric field introduced in condition

ORI S

(iv) of the open surface problem.

Then the functions E and H defined by

-K(ﬁ)vc(ﬁlﬁ')+ikze(§|ﬁ')ﬁ(ﬁ)]ds, R' ¢ (R3-B)

(68)

j R (R)xvG(R|R')ds, R' e (R>-S) (69)
s

where G 1is defined in (36),

are solutions of the open surface
problem.

To facilitate the proof of this theorem we first introduce
the following lemma.

Lemma 1l: If the hypotheses of Theorem 6 hold, then

J [G(Elﬁ')vo-i(§)+ﬁ(§)-voc(ﬁlﬁ')]ds =0, R e (R°-C). (70)
s

Proof: For R' ¢ (R3—§) we have, by means of the surface diver-

gence theorem (Theorem 3) and (66), that
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=i
0 = f G(R[R')T-K(R)ds' =
C

Expanding the surface integral we
From Theorem A.3 we have that the
(70) is continuous at ewery point

tlie second part and to prove this

gl P g « i

-J Vo [G(RIRM)K(R) 1ds
S

5.

obtain (70) for ﬁ e (R
first part of thé integral in
;ss. The same is true for

we erect a rectangular coordinate

system xyz with origin at Y and the z-axis in the direction

of the normal. We can then write

~>->. o o o —r—»_ag ->_§_§ -)_3__(__7,_ =
JSK(R) VoG(R[R")dS = [S[KX(R)BX + KY(R)ay + KZ(R)az]dS

~ A -5 ~
= x-f K (E)VGdS+y-f K (R)VGdS+z-f K_(R)VGds. CTL)
X % z
S S S
Applying the results of Theorem A.4, with n(r) = z and
Kz(;) = 0, to this equation we get the continuity property at
-
BRENS ]

We now proceed to prove Theorem 5. We first show that (68)

and (69) satisfy Maxwell's equations (8) at all points R' € (R3-§):

-3

V'xE(R') = ikzj V'x[G(R|R')K(R)]dS =
s

e 3> -
= ikZJ K(R)*VG(R|R"'

S

)dS = ikzZH(R'). (72)

> =

V'xH(R') = j V'x[K(R)XVG(R|R')]dS =

S

= —J (K (R)92G(R|R')+K (R) +V'VG(R|R") ]ds.
S
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By a standard identity and (70)

[ K(R)«V'VG(R|R')dS = v'f K(R)-VG(R|R")as = -v'f G(R|R")v,-K(R)as,
s s s
(74)
so that (73) becomes
V'xH(R') = —f [vo-ﬁ('ﬁ)vc(ﬁlﬁ')-kzc(§|§')R(ﬁ)]ds = ikYE(R').
s
(75)

We note that in (74) we also used the fact that, since i is

a surface field, K-VG = E-VOG.

The functions E and H are clearly infini tely differen-
tiable at every point R' ¢ (R3—§). From (68) and Theorems
A.3 and A.4, E is continuous to the surface S from S, and
S_. From (6%) and Theorem A.5 the same is true of H. Moreover,
from (72) and (75) and Theorem A.3 and A.5, we see that Maxwell's
equations hold on S in the approach to it from S and S_.

St

We next show the radiation conditions (10) are satisfied.

Agymptotically,
ikR' ikR' A
CRIRY) = S § #0| el TE = S (ARERY) # Dl—Sml,  Bem,
R o2 R 12
R R
(76)
where
-ikR'*R
. A R
¢ = , . (77)

Equations (76) are uniformly valid for all R e S and all
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] R'. From (68) we have that
> > ZeikR‘ 22 - . 7
E(R') = ——— [-¢R'V, *K+ik¢K]dS + 0| —=|, (78)
R 0 S
= R
while from (69)
'.
3 i L eikR‘ o > > 3
| R'XH(R') = - T J ik¢R'xX (KxR')dS + 0 )
/‘ s Rl
i
ikR' Aol oo
{ =00 & [ ik¢ [K-R' (R'+K)1dS + 0 _1_5 , (79)
% R S Rl
so that
o Ty £5 > > & ZeikR' > 5 > 1
E(R')+ZR'XH(R') = R R J [-¢VO'K+1k¢R"K]dS + 0 —5 -
) R'
i (80)
We now note that
1 KR' R SR :
Vo = - Z‘EV[ F ]= -ik¢V(R'+R) = -ik¢R', (81)
K
so that (80) becomes
> -5 £ > > s ZeikR' > > 1
E(R')+ZR'xH(R') = =-R' ——— [V, K+K+Vd]dS + O|—=| =
R 0 2
S R
x ikR'
=-R'Z-e———Jv'(¢§)ds+o—l—2 = (82)
R S g R'
X ikR' R
= R’ %—.—-Jd)T-de+0~—15 =0{-—1—2 '
C R' R'




e

where, above, we used the surface divergence theoren, eq. (66},
LY

and the fact that ﬁ-v¢ = K-v0¢. Similarly,

ikR'

L,
N ~ b
H(R')-YR'xB (R') = - EiT__ J ik¢KxR'dS - :
S E
ikR"' s i

- S f ik¢R'xKdS + 0 —15 = 0 —i7 ) (83)
S R R :

We note that the first integral in (82) is the first term in an
asymptotic expansion of (70). Indeed, the radiation conditions
can be obtained by first using (70) and then expanding

asymptotically. This we do in Appendix B.

We next prove that the edge conditions are satisfied. To

this end we let

g

HRIRY) = G(R{EY + = - %F[ik + BB R R e,
47| R-R' | (84)

We can then write in place of (68)
E(R') = - = f v k@v—t— + K2 (%) las +
s |R-R'|  |R-R"

(85)

+ J [%E vo-i(ﬁ)VH(§|§')+ikzn(ﬁ|§')i(§)]ds, R ¢ (R3-§),

s

while in place of (69)

L g8« J B(R)xVH(R[R')dS, R' ¢ (R°-§) .
s

3 B

J R (R) xV
S R-R'|
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The second integral in each of these two expressions can be

estimated immediately. We first note that

T 1 i1 eik'R R'| L2 ik « (ik|R-R'"
BRIR') = gol=—0 it By
[R-R" | n=0 ;
VH(R|R") = K (v)k-Re]) § Aol GkIR-R'[)
T E (n+2) !
so that
R K|R-R' | = 2 k&R
H@EIRD | < BB —— , [THR[RY | < 2 (87)

Since we are verifying the edge conditions the point R' is a
point near the boundary C of S while R is a point of  Ss
Since S is bounded, we can draw a sphere of finite diameter

D that contains S and R'. Then |R-R'| < D, and

kD 2 kD
> k -y ke
|H(R|R") | < jﬂ , JVHERIRY | < 20 (88)
With these inequalities we have that
lJ [5— v -K(ﬁ)va(ﬁlﬁ')+ikZH(§[§')k(ﬁ)]ds <
S ik 0 —
kD
Zke = pak gk
e oy JS(IVO'K(R)Hle(R)l)dS, (89)
> 5 > > > o > > kzekD > >
}J K(R)xVH(R|R"')dS| < J |K(R) | |VH(R|R") |dS < =—; J |k (R) |ds.
S ~ s B L -

(90)
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Since |K| and ]VO-KI are integrable by assumption, we see
that the integrals involving H(ﬁlﬁ') in (85) and (86) are
bounded, so that in verifying (11) we need concern ourselves
only with the remaining integrals in these two equations. That é;
integrals of this type do satisfy the conditions in (11) is the

subject of Part I of this work.

- -

To show that the edge condition (iii.b) is also satisfied
we use (69) and Theorem A.5 to get that at every point T of
)

B (F)-H, () = -n(r) xK(7). (91)

On any of the curves Cg,

>
e e ey ey

~ ~ A

£@ @O, @) = KD t@a@d = 1@ KD, (92)

By condition (ii) in the present theorem we see that the limit
as € > 0 exists and is equal to zero, so that the edge condition

(iii.b) is indeed satisfied.

The boundary condition (13) can be shown to be satisfied
by first evaluating (68) at a point ¥ of S. Using (A.13) and
(A.14) we have that

nxB|. = nxB = J [%Ev0~*(§)ﬁ(?)xvc(§l§)+ikzc(§|§)ﬁ(?)xi(i)]ds.
s

Combining this with (67) we obtain (13).
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from (91) we have that

Finally,

n(¥) x H_O-H E) = k@, Fes (94) .4

so that, with condition (i) above, the density conditions (v)

of the open surface problem are satisfied. This completes the

proof of Theorem 6 and we can now state the equivalence theorem.

1 Theorem 7: The pair of vector-functions {E,H} is a solution

of the open surface problem if, and only if, E is given by

L Tt P R v 1 P S R ST O

(68) and H by (69), where K satisfies conditions (i)-(iii)

of Theorem 6.

G. The uniqueness of the solution of the open surface problem

AL T

In this section we prove that the open surface problem has

S

at most one solution. To this end we assume that there exist

i i - > > > -
two solution pairs {El,Hl} and {Ez,Hz} and we form their

difference

(95)

The pair {E,ﬁ} is a solution of the open surface problem with

the boundary condition (13) replaced by




e

e oS P e+
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We now apply the divergence theorem to the function E*xH in

the region bounded by the surface S defined through (39) and

0

(40) (see also Figure 1) and the surface SR of a sphere whose

radius R eventually recedes to infinity. Calling this region

V0 we have that

ne (E*xH)ds. (97)

0 5ot oy

The surface integrals over S and S_, vanish in the limit

+§
as § > 0 because of (96). The surface integral over Ze
vanishes in the limit as € » 0 as shown in Appendix C. Thus
the integral over SO vanishes in the limit as SO collapses to
S. For the integral over Sg Wwe use the radiation conditions

(10) to rewrite the integrand as

ne (B*xf) = -E"+ (nxfH) = -B*+ (RxH) = YE-B* + 0[%]E* = YEE* + O li ,
R
(98)
since E = 0(1/R) (Wilcox, 1956). Since
Ve (B*xH) = HeVXE =B*+UxH = -ik2H+H +ikYB-B = ,
we have for (97)
ikj (YE-B*-zH.0%)av = yj E-E¥as + 0(1), R =+ = (99)
v S

R

where V = lim{lim VO]' Since the left-hand side of this
e*0 {60

R AN e £ M T Wimmae bl s~ 8 a3 67 Al o B B A B S i

e -
5 ST, - W gt s Myt AN SroN AN, ) =y z WL T S 3 54 5 >
el o S » N = ’ 0o i s



-39~

expression is purely imaginary, we have that

R

. 7> . .
For points not on S, E satisfies the vector wave

VXVXE-kzg = 0. From the second of (8), definition

equation

(2), and Stokes' theorem, we have that V-E = 0 so that

Egs. (100) and (101) imply that outside a sphere of radius R

enclosing S, the electric field vanishes identically. This

is due to the following result by F. Rellich (Muller, 1959).

Theorem 9: If V(R) is a solution of the Helmholtz equation

o3

- for R = |R| > C, and if

’ R » o,

J lv(®) |%a0 = o|i
Q R

then V(R) vanishes identically in |R| 2

Thus E and H vanish identically exterior to the sphere.

Between the sphere and S, they also vanish being analytic

solutions of (101).
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We have then shown that El = E2 and Hl = H2 for all

points R # S. Since these fields are continuous to the
surface S from S, and S_, these relations hold also

-

for points R of S. We can thus state the following theorem:
Theorem 8: The open surface problem has at most one solution.

5 Concluding remarks.

The main results of this work are the equivalence and
uniqueness theorems (Theorems 7 and 8, respectively.) The
equivalence theorem is an immediate consequence of Theorem 5 and
6, while the proof of the uniqueness theorem rests heavily upon
the results of Appendix C. In proving Theorems 5 and 6 we note
that condition (iii.b) in the statement of the open surface problem
(Section C) was not needed at all. What was really needed was the
statement in (24) which is a direct consequence of (11). The
statement in (29), which follows from (24), (25), and condition
(iii.b), is sufficient for the proofs but not necessary. Moreover,
in deriving it, we only needed that the function in (12.c) be
continuous but not H6lder-continuous. The same is true regarding
the existence of the first partials of K in condition (v) .

i.e. in proving Theorems 5 and 6 we only needed the condition
that the surface divergence of K exists and that its real and

imaginary parts are H-regular density functions for 8.

The "excess" conditions then were necessary only in proving

the uniqueness theorem, and specifically in showing that the

S —.

s £ <L "2
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integral in (C.1l), Appendix C, vanishes with ¢&. The question
that immediately arises here is whether we can employ the

divergence theorem and write

> >%k > " > = S
xH)ds = —f V+(E " xH)dV = 1kJ (ZH-H -YE-E")dV,
v v

€ € £
where Ve is the region enclosed by ZE. The last integral
here would then vanish with € because of (11). Because Ve
includes the edge C, where the functions are not defined on
it, we could not answer this question for sure, and for this
reason we followed the longer proof of Appendix C, and in the

process we had to impose the additional conditions.

Finally, in the last steps of the proof of Appendix C
(egs. (C.14)-(C.21)), we note that condition (I.2) on the open
surface plays an indispensible role, which once more raises

the question of how fundamental this condition is for problems

of scattering by open surfaces.




R o i T At

T
>

- p—

f.
E
F
t.
Lt

e —

T I TR TR T

AT W

e .

il Sl s A ARG . -~ s it g 2i

A=

References

Asvestas, J. S. and R. E. Kleinman "Low-Frequency Scattering
by Perfectly Conducting Obstacles," J. Math. Phys. 12,

495 =8O

Heins, A. E. and S. Silver " The Edge Conditions and Field
Representation Theorems in the Theory of Electromagnetic

Diffraction," Proc. Cambridge Phil. Soc. 51, 149-161, 1955.

Jones, D. S. The Theory of Electromagnetism, New York: MacMillan,

1964.

Kellogg, O. D., Foundations of Potential Theory, New York: Dover,

E953..

Miller, C., Foundations of the Mathematical Theory of Electromag-

netic Waves, New York: Springer-Verlag, 1969.

Smirnov, V. I., A Course of Higher Mathematics, Vol. V. Oxford:

Permagon Press, 1964.

Sobolev, S. L. Partial Differential Equations of Mathematical

Physics , Reading, Mass.: Addison-Wesley, 1964.

Sommerfeld, A. Electrodynamics , New York: Academic Press, 1964a.

Sommerfeld, A. Optics, New York: Academic Press, 1964b.

Stratton, J. A. Electromagnetic Theory, New York: McGraw-Hill,

1941

e P Ty g VT g e - E

ramra—

Sra

e ey e

PRy

S G



References - continued

Van Bladel, J. Electromagnetic Fields, New York: McGraw-Hill

1964.

Wilcox, C.H. "An Expansion Theorem for Electromagnetic Fields,"

Comm. Pure Applied Math. 9, 115-134, 1956.




-44~

Figure 1. A Cross-Section of the Surfaces S and S5,
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Appendix A. The behavior of certain integrals.

In this appendix we discuss the continuity properties

of integrals of the type

where the function h 1is a regular density function (Part I,
Def. 8) for S, while g is an H-regular density function

(Def. 7) for S. It is clear that U and V are infinitely
differentiable functions at all points R' of space which do
not belong to S. The only other points of interest are those
points r which belong to S (but not to its boundary C). The
proofs of the continuity properties of U and V at such points
closely follow those for the same type of integrals over closed

surfaces. For this reason we will present here only the results

and will refer the reader to Muller (1969) for the proofs.

Theorem A.l: If h 1is a regular density function for S, then

the function

U(R") =J iR gg, (A.1)
S |R-R'

-R'|

is continuous at all points r e S.

We outline part of the proof of this theorem to point out

-»

how it differs from the one for closed surfaces. Let r € S.
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Since S 1is a regular open surface, we can erect a rectangular
coordinate system with origin at r and the z-axis along the
normal ;(;) to S at r. Portion of S can be described in
terms of this coordinate system in the manner of (I.l). Let

d be a positive number such that the sphere IE'-;] < d, and
with center at ;', contains only that part of S that is
described as in (I.l) and, if necessary, we restrict d so that

no points of the boundary C are contained in the sphere. We

denote this portion of S by Sd(;) and let

UR') = J R s . f o 2B g5 =y @&+, @RY).
S=8 S

(A.2)

We note that U1 exists as an improper integral as far as the
integration in the neighborhood of the boundary C is concerned
because of the properties of h. As for the singularity at ;,
Miiller (1969, lemma 66) has shown that U, (R') = 0(d). Thus U

exists as an improper integral if R' ¢ S. For [R'~T| < d/2 and

> >
|R-r| > d, we have that

1 1 |R'-7| 2 iz, :
> 3 > > f— > > > > i _2- |R —r|' (A
[R-R" | |R~r | [R-R' | |R-r| — 4
so that
IUl(ﬁ')—Ul(?)l 2 35 |R'-F| [ |h(R) |as
: d S=S4(¥)

i e Ty pe——
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This last integral exists by virtue of the absolute integrability
of h. Thus the continuity of U, at r has been proven. The
proof for the continuity of U, is given:in Muller (1969, lemma
69). Indeed, the proofs in Muller and the ones required here
di“fer mostly with respect to the integral over S-Sd(;). In

] >2r the integrand is continuous, and hence bounded, while
here it could become unbounded near the boundary C but it is

still integrable.

Lemma A.l: The function

Wy = | v—1 _ as (A.5)

is continuous at every point T €S in the approach to it from

either the side S or the side S_. Moreover,

+
1 o e 1 1
v dsS = 2mn(x) + J n — ds + J ds,
Is+ |R-R" | s oM |R-7| s 0 |R-7
(A.6)
f vt d4s = -2m () + f n - —L_ds + J v, —i— ds,
S_ |R-R'| S |R-r| S = |R-r]|
(A.7)
where by S _(S_) we mean the limit of the integral as R
approaches ¥ from the side S+(S_), and where Vo denotes
the surface gradient, 1i.e.
VeV, ¢no . (A.8)
0 on

ST A - TSN, TN T N T

£
3
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Proof: Let T be a.regular open surface having the same boundary
C as S but no other points in common and such that T §
(which is a smooth closed surface) has an exterior normal which
coincides with that on S at their common points. According to
Muller (1969, Lemma 70), lemma A.l is true for the closed surface

TUS and, hence, for S.

Remark: In lemma 70 of Miller it is also proven that the last

integral in (A.6) is continuous at all points r e (R3—C).

Following Miiller (1969, Theorems 41 and 42) we now have

the following result

Theorem A.2: The function

ds, (A.9)

where g is an H-regular density function for the surface S,
is continuous at every point T €S in the approach to it from

either the side S or the side §S_. Moreover,

+

I g(R)Y —=— as = +2rg(F)n(¥) + J g(F)n %; L as +
S,(s_) |[R-R" | S [R-r |
+ f g(F)7, —— ds + f [9(R)-g(¥) ]V —— as , (A.10)
S |R-r | S |R-r |

where the plus sign corresponds to the approach from S+, and

the minus from S;.

et T 3 B e i
2 A - v




Moreover, if we let

> > > > i 2
RRIE') = GBI )+~ =« %F[ik + BB 1RR 4], @

4m|R-R'|
then, according to Miiller (1969, lemmas 73 and 74), the functions

f h(R)H(R|T)dS and I g (R)VH(R|¥)ds
S S

are continuous at all points r of S, so that together with

Theorems A.l and A.2 we have the following results.

Theorem A.3: If h 1is a regular density function for the surface

S, then the function
u(R') = [ h(R)G(R|R')dS ‘ (A.12)
S

N ’ . >
is continuous at every point r of S.

Theorem A.4: If g 1is an H-regular density function for the

surface S, then the function
V(R") = J g (R)VG(R|R')ds (A.13)
S

is continuous at every point r of S in the approach to it from

either the side S or the side S_. Moreover,

+

-
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I g(R)VG(R|R")as = 3 % g(F)n(F) +
s, (5_)

+ [ a@n & cdinias + [ g@Bv cdiDas +
S S
+ J [g(R)-g(r) ]VG(R|T)ds, (A.14)
S

where the minus sign corresponds to the approach from S,» and

the plus from S_.

Finally we examine functions of the type
[ dxvs@iinas,
S

where the vector-function 5 has components which are H-regular
density functions for S. To this end, and with R' ¢ §, we

write

ds = I lé(ﬁ)-§(§)]xv—;—§—T ds+§(§)xf V—2i— as.
S )

3 (R) xv
Js | R- S |§-§'|

I e

|R-R" |
(A.15)

The first integral is continuous at all points R' ¢ (R3-C) and

the proof is as in Theorem 41 in Miiller (1969). For the second

integral we employ Lemma A.l so that

f J(R)yxv—L— as = j (3 (R) -3 () 1XY—L— as22ng (F)xn (D) +
s,(s) |R-R" | s |R-T |
> > = P 1 > > 1
+ g(r)XI n(ﬁ) T " ¥ g(r)xf v — a8 . (A.16)
s M |R-F s O |R-2|
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Using the argument we employed for Theorems A.3 and A.4, we have

Theorem A.5: If the vector-function 3 has components which

are H-regular density functions for S, then the function

w(R') = [E(ﬁ)xvc(il'ﬁ')ds
1S :

is continuous at every point T €S in the approach to it from
either the side S, or the side S_. Moreover,

+

f g(R)xVG(R|R")ds = t% n () g (%) +
basie)

ds + f [3(R) -3(F) 1xv —L— as,
S |R-r |

->

+ J G(T) XV g
S |R-r|

where the plus sign corresponds to the approach from S, , and

the minus from §S_.

(A.17)
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An alternate derivation of the radiation conditions.

In this appendix we prove in a different way than in Section
F that (68) and (69) satisfy the radiation conditions. For

R' - o, we write

1

. (B.1)
=

G(R|R") = g(ﬁlﬁ')+o[—l5] , V'G(R|R') = ikg(§|§')ﬁ'+o[
Rl

where 0 e
eik(R'-R'-R)

g(ﬁlﬁ') =i A7R" ' (B.2)

and where (B.l) are uniformly valid for all ReS and all R'.

For (69) we then have that

H(R') = . . R' » (B.3)
with .
> k [ 2,.2,2 ~ikR'-R .

A= - %— J R'xK (R)e ds. (B.4)

bl
For (68) we have, using (74),
3
E(R') = - %E f K(R)+V'V'G(R|R')dS+ik2 J G(R|R')K(R)das. (B.5) =
S S

But, for R' » =,

' (B.6)

V'9G(RIRY) = ikv'g(ﬁlﬁ')ﬁ'+o[—l7] = -k2gR|R)IR'R'+0| L5
R R’
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so that

2@ = ikz | R (R'-R)gas+ikz | gkas+o|1-| =
s it ML

= ikzﬁ'xf [ﬁ(ﬁ)xﬁ']gds+o[_l2]
Rl

S
ikR' 4
= =2 £ (] R'XX*'O ‘_1_ I} R' +*> o,
R el

From (B.3) and (B.7) the radiation conditions (10) follow

immediately.

(B.7)
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" Appendix C. The estimation of an integral.

In this appendix we will estimate the integral j

J n- (E*xH)as, (c.1)
ze
with’ z, defined in (40), which appears' in Section G. To this
end we choose a point Mo of C and with it-as origin we erect g
a rectangular coordinate system with the x~axis in the direction 4

of the tangent vector to C at M,, and the z-axis in the

dirgctionféf»the normal to S at M. The y-axis then lies on
*the plane tangent to S at M and is directed toward S. On
‘ the yz-plane we erect'a polar coordinate system (p',¢') as

described in Section B. The angle ¢' is measured counter- = i

clockwise from the positive y-axis. On this plane we draw the-:
circle o' =§e > 0 and we estimate the integrand of .(C.1l) at
points of this circle except at the point which belongs to the

surface.

~

Since the unit normal n is pointed toward M, we have that

2 ne B*xfl) = -p'« (B*xH) = -(y cos. ¢'+z sin ')« (B*xH) =

- cos ¢'(§*Xﬁ)y-sin ¢'(§*Xﬁ)z =

n

= ¥ *_* -l ' *_* -
cos ¢ (Ez Hx E, Hz) sin ¢ (Ex Hy Ey Hx)

* et R sk &
= Ex (cos ¢ Hz sin ¢ Hy)+Hx(81n ¢ Ey cos ¢'E, } - (C.2):
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As mentioned above, the integral in (C.l) appears in Section G
where the functions E and H are assumed to be solutions of

the open surface problem. Then, by the equivalence theorem 7,

E and H are given by (68) and (69), respectively. These
expressions appear rewritten in (85) and (86) in a way so as

to isolate the singularity of G. As pointed out in the disucssion
there, in examining the behavior of E and H near the edge

we need only cosider the first integrals in (85) and (86). Thus,

with R' = (p',9'), we have
e 1 7 = 1 ik?Z > >
E(R') = - 37— J [r— V_*K(R)V + K(R)]ds + 0(1) (C.3)
47 S ik 0 |§_§.| |§_§.|
HR') = - &= f K(R)yxv —L— ds + 0(1). (C.4)
S | R-R'

We will estimate (C.2) by using these last two expressions. We

note that the densities appearing in them are H-regular density
functions for S by condition (i) in Theorem 6 so that we can

use the results in Part I. Though K and Vo-ﬁ are complex-valued

we will treat them as real-valued, the extension to complex-

values being obvious. From Theorem 1, Part I, we have that

Ex(fz') = 0(1), p' » 0. (C.5)

We will now prove that the same is true for Hx. From (C.4) and

with respect to the coordinate system above, we write

¥
t
)
5
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gy J K (ﬁ) SRl e ———(dS + 0(1)
4T S[ Y 02 l z ﬁ l

ds

> > 3

R-R'

+ 041 ) .

IS[KY(R')(Z-Z')-KZ(R)(Y-Y')]

We note that the integral here is a combination of the integrals
appeariﬁg in (I.43) and (I.74) and will be treated in the same
way up to a certain point. As remarked at the beginning of
Section D, Part I, the integration over S can be split into
two parts one over S(A) and one over S-S(A), where S(A) is
that neighborhood of S about My whose projection on the

xy-plane is the region A defined in (I.12). The integral

over S-S(A) is continuous in a neighborhood of MO’ and its

limit as p' > 0 1is equal to the analogous integral obtained
when R is replaced by 8. The integral over S(A) can be

written as

ds
&3

Klf ey ngliu (ate ] o

o

Kz(x,y)(y—y')sec V(x,y)
= J dxdy -
A

R |3

dxdy = I,-I

Kz(x,y)(y-y')sec vi(x,y)
IA ' il o

|R-R" |3

where Y is defined in (I.25) and is the angle the z-axis makes

with the normal to the surface at (x,y).
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For Il we write

Tl = J [Kz(x,y)sec w(x,y)—Kz(O,y)sec v(0,y)] zjixij dxdy +
A R-R'

3
. 1 i
+ J K, (0,y)sec v(0,y) (y-y') ey = —§1dxdy +
A |R-R" | R”]

+ J Kz(O,y)sec Y(0,y) X:§L dxdy, (c..8)

A R
where

R =A/x?+(y-y") 2+ (F(0,y)-2) % . (c.9)

The second integral above has been discussed in Part I, egs.
(I.32)-(I.36), and has been found to be bounded. For the first
integral, call it I, we write

I, = J [Kz(x,y)-K (0,y) ]sec ¥ (x,y) —:X:X—§ dxdy +
A z |R-R"

<>

+ J [sec Y (x,y)-sec w(O,y)]Kz(O,y) T—ngij dxdy . (C.10)
A R-R'

The second integral here can be shown to be bounded by treating
it in the same way as the one appearing in (I.24). For the

first integral we use the mean value theorem to write

BKz(x,y)
Kz(x,y)-Kz(O,y) = | ——| x ’ 05 x3 Xq - {C.11)
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Since 9K _/9x 1is an H-regular density function for S, the
integral reduces to one as in (I.29) which has been shown to

be bounded.

For I2 we write

5 | e

' 1, = J [k, (x,y)sec ¥ (x,y)-K (0,y)sec ¢(0,y)] 22— dxdy +

A |R-R" |
| + J K, (0,y)sec ¥(0,y) (z-z') |——+— - 1—3-_ldxdy +
A Y [R-R" | R

| + J Ky(O,y)sec Y(0,y) F(X'Y)SF(O'Y) dxdy +

i A R
‘V == 1
i 4 J K, (0,y)sec ¥(0,y) 20.y)ce’ ayay. (C.12)

A

The first two integrals in this expression can be treated as the

corresponding ones for Il. The third integral is of the same

type as the one appearing in (I.76) and is bounded. We can then

E: write

f 1,-1, = JA[KZ(O.y)(y—y*)—xy<o,y><F(o,y)—z')1§EEE§QLdexdy +0(1),

l“' ‘ R

[ 4 p'+> 0.  (C.13)

In order to estimate this integral we will first rewrite it slightly
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differently. We note that Kz and Ky are evaluated at
points of S which also belong to the yz-plane, i.e. on the

curve z = F(0,y). As explained in Part I, after eq. (I.2),

the normal to the surface at such points and the normal to the

curve coincide because of condition (I.2). This normal is given by

A ~E_(0,y)y+z
n = —X ) (C.14)

/ 2
1+Fy (0,y)

The unit tangent vector to the curve is

P y+F_(0,y)z
| JE— ! (C.15)

7 7
l+Fy (0,y)

~AOA

so that Txn = x. Since the current density K is a surface field,

it can be written as
K(0,y) = Kg(0,y)T+K_(0,y)x, (C.16)

so that

K. (0,y) F _(0,y)K,(0,y)
Ky(oly) = £ ’ KZ(O'Y) = X T ' (C.d7)

/'_—2—_— /—2—'
1+Fy (0,y) 1+Fy (0,y)

and, since sec Y(0,y) = /1+Fy2(0,y), we have for (C.13)

Ky (0,y)
~I, = (F,(0,y)(y-y')=(F(0,y)=2')] ———m—— dxdy+0(1), o' + O
2 B R

=

We now employ the coordinates (s,p) and use the results for
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the integrals in (I.45) and (I.78) to get

b KT(O,D)(l-;p)
2[ 5 [Fp(O,p)(p-y')-(Fto,p)—z')]dp+0(1),

L 0 (p-y")2+(F(0,0)-2")
(€.19)
where K = k(0), « being the curvature of the projection of
the boundary C on the xy-plane defined in (I.1ll). With
w =p + (E(,p), W =y'tiz' = p'(cos ¢'+i sin ¢") (C.20)
we can write
Kp(0,p) (1-kp)
Il-I2 = ZImfc pm du + 0:(1) e 21}

I

where Cl is the curve whose equation is 2z = F(0,p),

0 <p <b. since K, is HSlder-continuous on C,;, including

the end-points, and since KT(O,O) = 0, we have that the integral
is a bounded function of w tending to a definite limit as w
approaches the end-point (0,0) along any path (Muskhelishvili,

1953) .  From (C.21), (C.7), and (€.6) we have that
Hx(ﬁ') =0(l), p' >0, (C.22)
so that (C.2) becomes

In+ (B*xH) | < AcH | +]H, [ +E |+|E, ) < A(|H|+]|E]), o' » 0, (C.23)

where A 1is a positive real number.
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From the Cauchy-Schwarz inequality and (C.23), we have for

(C.1)

” n.(E*xﬁ)dsl = “ |n-. (E*xﬁlds} =
i z

€ €
< 2
Le2m 4 i
= J J |n-§*Xﬁ| g [l—ep'-éETJd¢'ds' <
0 ds —

L (27
< A'ez J J (|§|2+|ﬁ|2)d¢‘ds' 7 (C.24)
0 ‘0

where A' 1is a positive real number. Combining this result

with (11), we get

[ ne (E¥xH)ds = 0(e%), € * 0. (C.25)
z
€
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